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Abstract

Analytical ultracentrifugation allows one to measure in real-time the concentration gradients arising from the application of a centrifugal
force to macromolecular mixtures in solution. In the last decade, the ability to efficiently solve the partial differential equation governing the
ultracentrifugal sedimentation and diffusion process, the Lamm equation, has spawned significant progress in the application of sedimentation
velocity analytical ultracentrifugation for the study of biological macromolecules, for example, the characterization of protein oligomeric states
and the study of multi-protein complexes in solution. The present work describes a numerical algorithm that can provide an improvement in
accuracy or efficiency over existing algorithms by more than one order of magnitude, and thereby greatly facilitate the practical application of
sedimentation velocity analysis, in particular, for the study of multi-component macromolecular mixtures. It is implemented in the public domain
software SEDFIT for the analysis of experimental data.
Published by Elsevier B.V.
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1. Introduction

Analytical ultracentrifugation is one of the classic tech-
niques of biophysics and physical biochemistry. It derives its
potential from the conceptual simplicity and from its firm theo-
retical thermodynamic basis. In sedimentation velocity analyti-
cal ultracentrifugation (SV), an optical system allows monitor-
ing the evolution of macromolecular concentration gradients in
free solution caused by the application of a gravitational force.
In the eight decades following Svedberg’s Nobel prize in 1926,
it found wide-spread applications and is still an important today
tool in many traditional areas of protein biochemistry [1–3],
synthetic polymer chemistry [4], molecular biology [5], pro-
tein interactions [6], as well as more recently emerging fields
such as supramolecular chemistry [7], dendritic polymers [8,
9], the characterization of nanoparticles for drug or gene de-
livery and biomaterials [10–13], amyloid formation of proteins
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[14], and the development of formulation conditions for pro-
tein therapeutics in pharmaceutical industry [15–18]. In the last
decade, the increasing potential for computational data analy-
sis, in particular, the highly detailed mathematical analysis of
the sedimentation boundary shape has spawned a resurgence of
interest and the development of many new applications. For re-
cent reviews and introductions, see [19–23].

In 1929, Lamm derived the partial differential equation
(Eq. (1)) for the evolution of the macromolecular concentration
distribution in a sector-shaped solution column in the centrifu-
gal field: for an ideally sedimenting, non-interacting macro-
molecular component, the concentration profile χ(r, t) as a
function of distance from the center of rotation, r , and time,
t , follows

(1)
∂χ

∂t
= 1

r

∂

∂r

[
rD

∂χ

∂r
− sω2r2χ

]
where s and D denote the macromolecular sedimentation and
diffusion coefficient, respectively, and ω is the rotor angular
velocity [24]. In the following decades, approximate analyti-
cal solutions for several special cases that were of practical
algorithm for the simulation of sedimentation velocity profiles in analytical
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importance in the experimental study of SV of macromolecu-
lar samples were found by Archibald [25], Faxén [26], Fujita
[27], and others [3,28–30]. In the 1960s, the advent of com-
puters allowed the prediction of concentration profiles in the
general case including the description of sedimentation and dif-
fusion coupled with chemical reactions. Several groups used
this tool to explore a variety of topics important in biochemical
applications, such as hydrodynamic non-ideality [31], effects of
hydrostatic pressure [32], density gradients [33], coupled sed-
imentation and chemical reaction for proteins with rapid self-
and hetero-association [34–36], and enzymatic activity [37].

At that time, also the modeling of experimental data with
Lamm equation (LE) solutions was already envisioned and ad-
dressed to the extent possible [36]. With the resurging interest
in analytical ultracentrifugation since the 1990s, more approxi-
mate analytical [38–40] and numerical [41–43] solutions of the
LE were developed, and several software packages are currently
available that embed different approaches to the modeling of
experimental SV data, including BCPFIT [44,45], LAMM [39],
SEDANAL [46], SVEDBERG [38], ULTRASCAN [47], and
from our own laboratory SEDFIT [41,48] and the multi-method
global analysis platform SEDPHAT [49,50]. The latter two are
based on the concept of directly fitting (single or multiple) data
sets from the entire sedimentation process(es) in the original
data space, accounting explicitly for the characteristic system-
atic signal offsets of SV data acquisition by algebraic separation
of variables [51].

Recently, increasing computational power readily available
in desktop computers enabled more complex applications, some
of which are currently widely used [21,52]. It allowed, for ex-
ample, using LE solutions to be used as the kernel in Fredholm
integral equations, such as in the sedimentation coefficient dis-
tribution c(s)

(2)a(r, t) ∼=
∫

c(s)χ1
(
s,D(s), r, t

)
ds

(where a(r, t) is the measured concentration evolution) [53–
55], and multidimensional extensions such as the two-dimen-
sional size-and-shape distributions [56], and multi-component
sedimentation coefficient distributions for multi-protein com-
plexes [57]. Fitting these models to experimental data gives
high-resolution, diffusion-deconvoluted macromolecular size-
distributions. This approach has been extended to the descrip-
tion of macromolecular sedimentation in density gradients from
sedimenting co-solutes [58], which are frequently an obligate
sample component, for example, to achieve sufficient protein
stability, or to study proteins stability in pharmaceutical formu-
lation conditions. Computationally, this latter case requires the
kernel of integral equations to be a set of coupled LEs with a
cross-term describing the time-varying macromolecular buoy-
ancy [58]. Further, sets of coupled LEs are required to model
sedimentation of multiple macromolecular components that ex-
hibit chemical reactions on the time-scale of the experiment
[46,59]. Clearly, the ability to very efficiently solve the LE is
a key factor in these approaches, and can still be limiting in
some practical applications. Therefore, algorithms for solving
the LE is an important topic that directly relates to the bio-
Please cite this article in press as: P.H. Brown, P. Schuck, A new adaptive grid-size
ultracentrifugation, Computer Physics Communications (2007), doi:10.1016/j.cpc.
Fig. 1. Example for the shape of sedimentation velocity profiles of large macro-
molecules. The curves shown are calculated for a large protein complex (1 MDa
and 30 S) at unit concentration sedimenting at 50,000 rpm. Steep slopes can be
discerned in the sedimentation boundary, in particular, at early times close to
the meniscus at 6.2 cm (1), and close to the distal end (bottom) of the solution
column (2). The latter steep increase close to the end of the solution column
is referred to as back-diffusion region. It cannot be experimentally reliably im-
aged, and is therefore customarily excluded from the data analysis (but until
recently not from the computed LE solutions). The inset shows the increase in
concentration with time at the end of the solution column (3), reaching con-
centrations >100-fold the loading concentration, in the experiment frequently
leading to phase transitions and surface film formation. This back-diffusion re-
gion can be excluded from the LE solution by using the boundary conditions for
a semi-infinite column (or permeable bottom). Except for very early and very
late time-points, the boundary is enclosed by regions of the solvent plateau (4)
and solution plateau (5). The concentration in the solvent plateau is negligible
(for example, <10−30 from 6.2 to 6.3 cm at times >600 sec), and in good ap-
proximation is constant at zero. The concentration in the solution plateau is also
virtually constant, but decreasing with time due to the effect of radial dilution
in the sector-shaped solution column (see Eq. (4)). Also shown are examples
for the location of the fitting limits r∗

1 and r∗
2 that exclude the regions of experi-

mental optical artifacts and describe the radial range of reliable data acquisition.

physical study of macromolecules by sedimentation velocity.
It provides tools that are unique for studying interacting multi-
component mixtures in free solution [21,57].

The development of algorithms for the LE has been an active
field for several decades. Solving the LE is not trivial due to the
large concentration range that is spanned by LE solutions (see
Fig. 1), the steep gradients at the distal end (or ‘bottom’) of the
solution column, and the necessity for an accuracy sufficient to
fully exploit the high experimental signal/noise ratio of up to
1000:1. Numerical approaches currently appear to be advanta-
geous compared to approximate analytical solutions mainly due
to their flexibility, which allows features like non-uniform load-
ing concentrations [41,60], density gradients [58,61], the accel-
eration phase of the rotor [62], and—importantly—chemical
reactions [34–37,46,59] to be incorporated naturally into the
model. Several different finite difference and finite element
approaches have been described. Finite difference approaches
with fixed spatial grids were used in [41,63], but due to effects
of ‘numerical diffusion’ or ‘numerical dispersion’ [35,64,65]
algorithm for the simulation of sedimentation velocity profiles in analytical
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(graphically illustrated in [65] and [66]), they are only applica-
ble for conditions of small molecule sedimentation with small
sedimentation coefficient [41]. Alleviating this problem, time-
dependent grids were developed, either with regions of different
grid intervals periodically remapped to maintain fine grids at
the position of the boundary [67], or by continuously adjusting
the grid points such as to provide a moving frame of reference
[35,65].

Claverie has introduced the first finite element approach to
solve the LE on a fixed set of equidistant radial grid points
[68]. It avoids the problem of ‘numerical diffusion’ due to the
higher-order approximation of spatial derivatives inherent in the
finite element method, and provides very precise concentration
profiles when applied with sufficiently fine spatial and tempo-
ral discretization. Later, we have described an extension of the
finite element method on a grid with moving frame of refer-
ence, similar to the grid described in [65]. Translating the grid
points in time like sedimenting point particles generates a mov-
ing frame of reference on which the LE reduces to an easier
to solve diffusion problem [42]. This method naturally imposes
a logarithmically spaced grid with higher density closer to the
meniscus [42,65]. Recently, in their adaptive space–time finite
element algorithm (ASTFEM), Cao and Demeler have com-
bined the moving frame of reference approach with a region
of stationary grid points at high density close to the bottom of
the cell, in order to permit the use of sparser grids without com-
promising the numerical stability [43] (see below).

To our knowledge, all previous approaches used reflective
boundary conditions at the meniscus and the bottom of the
solution column as suggested by the physical setup of the ex-
periment (with the exception of the algorithms by Cox and co-
workers [36], which were not suitable for incorporating bound-
ary conditions and therefore simulated sedimentation starting
from a synthetic boundary on an infinite column). Also, to our
knowledge, in all approaches the choice of the total number
(and average density) of grid points, which scales the computa-
tional effort and the accuracy, was empirically chosen. Finally,
in none of the computational methods was use made of the triv-
ial analytical solutions for the regions outside the sedimentation
boundary. These issues were examined in more detail in the
present work, which, as will be shown, precipitated the devel-
opment of a novel algorithm that is far superior in accuracy or
speed.

The difficulty of solving the LE is exacerbated for large
macromolecules at high rotor speeds, where the low diffusion
coefficient also increases the steepness of the migrating sedi-
mentation boundaries (Fig. 1). This makes it necessary to use
a high density of radial grid points, which, in turn, increase
the computational cost. However, in SV experiments of large
macromolecules, the region of back-diffusion from the bottom
of the solution column is customarily excluded from consid-
eration in the data analysis for several experimental reasons:
(1) the inability to faithfully measure the steep concentration
gradients with existing detection systems (chiefly due to refrac-
tive index gradients); (2) the common observation of a phase
transition of macromolecules at the high concentration in con-
tact with the surface, leading to the formation of poorly re-
Please cite this article in press as: P.H. Brown, P. Schuck, A new adaptive grid-size
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versible surface films, which will substantially alter or even
eliminate back-diffusion; (3) the expectation that strong repul-
sive non-ideality will occur at the high concentrations close to
the bottom, making models of ‘ideally sedimenting’ interacting
or non-interacting species models inappropriate for this region,
even when the ideal models apply at the significantly lower con-
centration range observed throughout the rest of the solution
column. In order to exploit this observation, we have introduced
recently the concept of solving the LE for a semi-infinite solu-
tion column by implementing permeable boundary conditions
at the bottom of the solution column [56,59]. This eliminates
entirely the back-diffusion gradients, and thereby greatly sim-
plifies and improves the stability and computational cost of
solving the LE, in particular for the more difficult cases of large
macromolecule SV at high rotor speeds [56]. Despite the un-
physical boundary condition at the bottom, it can be applied to
the analysis of experimental data from the region ‘above’ (i.e.
at lower radii than) the back-diffusion range without compro-
mising accuracy [56].

In the current work, we reappraise the accuracy of the fi-
nite element algorithms for solving the LE under these sim-
plified boundary conditions of a semi-infinite solution column.
We demonstrate that, surprisingly, the dominant factor for the
remaining numerical errors is caused simply by the approxi-
mation of the curved concentration profiles as a sequence of
linear segments on a limited number of spatial grid points,
and that this error scales with the ratio of the local grid den-
sity and the width of the sedimentation boundary. Because the
sedimentation boundaries are steeper in the beginning and then
continuously broaden due to diffusion, this error is largest close
to the meniscus. Based on this observation and from physical
considerations, we describe a new finite element approach with
spatially varying grid density that minimizes the discretization
error throughout the solution column, and thereby significantly
improves the accuracy of the LE solution. A rational expression
is given that allows to determine the minimal grid necessary to
achieve a pre-set accuracy, adaptively adjusting according to the
macromolecular sedimentation and diffusion coefficients, and
also considering the specific experimental conditions and fitting
limits. Further, we introduce a new concept of a dynamic divi-
sion of the grid into active and inactive points, which eliminates
numerical computation for the regions of the solvent and solu-
tion plateaus (Fig. 1) where accurate analytical expressions are
available. We describe results from this new algorithm, which,
in comparison to existing algorithms, we found to reduce by
more than one order of magnitude the computational cost for
solving LE solutions.

2. Methods

2.1. Solutions of the Lamm equation

As initial condition for solving the LE, we assume uni-
form loading throughout the solution column with the con-
centration c0. Unless noted otherwise, we assume an ideally
sedimenting, non-interacting macromolecule in a solution of
constant density. The modifications to account for chemical re-
algorithm for the simulation of sedimentation velocity profiles in analytical
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actions or density gradients reported in [58,59] can be applied
to the algorithm described in the following without further com-
plications. First, we recapitulate two important special cases
with relatively simple solutions:

(1) At infinite time, the distribution attains sedimentation
equilibrium, which follows the well-known Boltzmann expo-
nential

(3)ceq(r) = c0
Mb(ξ(b) − ξ(m))

exp(Mbξ(b)) − exp(Mbξ(m))
× exp

(
Mbξ(r)

)
(with the abbreviation ξ(r) = ω2r2/2RT , the buoyant molar
mass Mb = sRT/D, the gas constant R and the absolute tem-
perature T ) [1]. For standard experimental configurations of
uniform initial loading (and also excluding flotation), at radii
larger than the hinge-point of the distribution [3], it is ceq(r) >

χ(r, t) at all times, such that ceq(r) can be used as an upper limit
for the extent of back-diffusion encountered in a solution col-
umn for the sedimentation of particles with given s and D [56].

(2) For finite times but in the limit of very large, non-
diffusing particles (D = 0), Eq. (1) has the simple analytical
solution

χ(r, t) = cp(t) ×
{

0 for r < m eω2st

c0 else

(4)cp(t) = e−2ω2st

This expression has been used, for example, in the apparent
sedimentation coefficient distribution ls-g∗(s) [69], and can be
generalized to account for solvent compressibility [61]. Eq. (4)
describes the sedimentation boundary as a step-function. For
D > 0, at any given time, Eq. (4) is still an excellent approx-
imation for the plateau regions where the concentrations are
radially constant and no diffusion fluxes occur (regions 4 and
5 in Fig. 1).

In the general case, the finite element solution of the LE
follows the methods by Claverie and Schuck that were de-
scribed earlier [42,59,68], as briefly outlined in the following.
The boundary shape is approximated as a linear combination

(5)χ(r, t) ≈
N∑

i=1

ciPi(r, t)

of basis functions

(6a)Pi(r, t) =

⎧⎪⎨
⎪⎩

r−ri−1
ri−ri−1

ri−1 � r � ri

ri+1−r

ri+1−ri
ri < r � ri+1

0 else
for i = 2, . . . ,N − 1, and

P1(r, t) =
{

r2−r
r2−r1

r1 � r � r2
0 else

(6b)PN(r, t) =
{ r−rN−1

rN−rN−1
rN−1 � r � rN

0 else
(termed chapeau- or hat-functions) with an underlying grid of
radial points r1 . . . rN , starting at the meniscus (r1 = m) and
ending at the bottom (rN = b) of the solution column. Because
Pi(r, t) are triangular, the concentration distribution χ(r, t) in
Please cite this article in press as: P.H. Brown, P. Schuck, A new adaptive grid-size
ultracentrifugation, Computer Physics Communications (2007), doi:10.1016/j.cpc.
Eq. (5) is approximated by piece-wise linear segments. Insert-
ing Eq. (5) into Eq. (1), multiplication with Pj and radial in-
tegration leads to a matrix equation for the evolution of the
coefficients ci(t).∑
j

∂cj

∂t
Bkj(t)

(7a)

=
∑
j

[
ω2(sA(2)

kj (t) − sGA(3)
kj (t)

) − DαG(t − t0)
−2A(1)

kj (t)
]
cj

with the tridiagonal matrices

Bkj =
b∫

m

PjPkr dr

A(1)
kj =

b∫
m

(∂Pj /∂r)(∂Pk/∂r)r dr

A(2)
kj =

b∫
m

Pj (∂Pk/∂r)r dr

(7b)A(3)
kj =

b∫
m

(∂Pj /∂t)Pkr dr

The values of the matrix elements depend on the boundary con-
ditions and on the grid. Claverie has used a static, equidistant
grid, and the boundary condition of a vanishing transport flux
(j = sω2rc − D(dc/dr)) at the beginning and end of the solu-
tion column, leading to the conventional LE solution for a finite
solution column [68]. Cox and Dale have given expressions
for B, A(1), and A(2) for this case [36]. When a time-varying
grid is used with grid-points that sediment like point parti-
cles ri(t) = ri(0)αG(t − t0) = ri(0) exp{ω2s(t − t0)}, a moving
frame of reference is established so that simulation of sedi-
mentation reduces to a diffusion problem, which can be solved
with greater stability for large particles [42]. The logarithmi-
cally spaced grid

(8)ri(0) = m(b/m)(i−3/2)/(N−1)

(for k = 2, . . . ,N − 2) is unique in that the grid maps onto it-
self after time-intervals �t = 1/[ω2s(N −1)]× log(b/m), such
that the evolution from sedimentation collapses into a simple
renumbering of indices. This makes this approach more stable
and accurate for cases of high sedimentation and low diffusion
constants [42]. With the spacing Eq. (8), the density of grid
points increases from meniscus to bottom approximately by the
factor b/m, i.e. for practical conditions of analytical ultracen-
trifugation typically on the order of 15%. Values for B, A(1),
A(2), and A(3) for the case of non-equidistant, time-dependent
grids are given in [42]. Recently, a modification of the moving
frame of reference method was described by Cao and Demeler
[43], where the grid points do not follow the spacing Eq. (8), but
are chosen to strongly increase in density towards the bottom of
the cell (see discussion below).

We have shown recently that the boundary condition of a
non-vanishing transport flux at the bottom leads to slightly
algorithm for the simulation of sedimentation velocity profiles in analytical
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modified matrix elements, and allows the simulation of sedi-
mentation on a semi-infinite solution column [59]. As indicated
above, the equilibrium expression Eq. (3) was used to judge
for any given set of parameters, whether or not back-diffusion
can be safely excluded, considering the distance between the
highest experimentally observed data point and the bottom of
the solution column [56,59]. This approach has been combined
with the Claverie and the moving hat finite element algorithm.

In the implementation in SEDFIT and SEDPHAT, an adap-
tive time increment was chosen, and propagation was computed
according to the second-order Crank–Nicholson scheme [42,
70]. This greatly stabilizes oscillations that otherwise may oc-
cur, in particular at coarse grids at the bottom of the solution
column. For considering the initial rotor acceleration, the ro-
tor speed was treated as a linear function of time ω(t), with a
slope ω̇ of 200 rpm/sec, and updated in 10 sec intervals [62].
(When modeling experimental data, ω̇ can be calculated from
the entries of t and

∫
ω2 dt of the experimental data file.)

2.2. Estimating the maximal observed boundary spread

From fundamental considerations, we can expect that the
diffusional spread of the sedimentation boundary will be time-
dependent, and approximately follow σ ∼ √

Dτ (with τ de-
noting the diffusion time). Of interest is the boundary spread
at a radial point r∗

1 adjacent to the optical artifacts that arise
when imaging the meniscus (Fig. 1). r∗

1 is usually removed
from the meniscus by a few tenth of a millimeter, as judged
from visual inspection of the superposition of scans. As imple-
mented in SEDFIT, r∗

1 is the smaller of the two fitting limits.
At a given sedimentation coefficient, the boundary will have
the velocity dr/dt = sω2r , such that the time required for the
boundary to arrive at a given radial point r∗

1 is on the order of
τ ∼ (r∗

1 −m)/sω2r∗ (neglecting the small radial-dependence of
the force and velocity). It follows that when the boundary has
reached a radius r∗

1 , the spread is approximately

(9)σ ∼ 1

ω

√
D

s
× (r∗

1 − m)

r∗
1

= 1

ω

√
RT

Mb

× (r∗
1 − m)

r∗
1

,

with the identity on the right-hand side using the Svedberg re-
lationship [1] between s, D, and the buoyant molar mass Mb .
Straightforward corrections can be applied to account for the
slightly increased extent of diffusion arising from the time lag
caused by the acceleration phase of the rotor.

2.3. Estimating the minimum obligate error from the
representation of a smooth boundary with piece-wise linear
segments

In the numerical solution of the LE, the continuous func-
tion χ(r, t) is represented by a piece-wise linear function. If we
take the maximum absolute deviation from the true, smoothly
curved χ(r, t) as a measure for the goodness of the approxi-
mation, the obligate minimal error that must occur is that from
Please cite this article in press as: P.H. Brown, P. Schuck, A new adaptive grid-size
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linear segmentation, i.e. the deviation

(10)δ0 = min
ci ,r0

{
max

r∗
1 <r<r∗

2

∣∣∣∣∣χ(r, t) −
N∑

i=1

ciPi(r)

∣∣∣∣∣
}

(with r∗
1 and r∗

2 denoting again the radial fitting limits, and the
radial grid given by ri = r0 + (m − b) × (i − 1)/(N − 1)). We
expect this error to depend only on the relative dimensions of
the grid density and the boundary spread. In δ0 the amplitudes
ci at the grid points may partially compensate the error from
linearization, as well as the relative location r0 relative to the
boundary midpoint. In practice, somewhat larger errors may
be encountered since the ci are computed by the propagation
scheme for the LE solution (see above), and not by the opti-
mization problem Eq. (10). Therefore, we also estimated the
following quantities δ1 and δ2

δ1(N) = max
r0

{
max

r∗
1 <r<r∗

2

∣∣∣∣∣χF (r) −
N∑

i=1

χF (ri, t)Pi(r)

∣∣∣∣∣
}

(11)δ2(N) = min
r0

{
max

r∗
1 <r<r∗

2

∣∣∣∣∣χF (r) −
N∑

i=1

χF (ri, t)Pi(r)

∣∣∣∣∣
}

i.e., we assume that the concentration values of the approxi-
mations at the grid points are identical to the LE solution. For
computational purpose, we calculate these quantities for LE so-
lutions χF (x, t) either based on a numerical solution with a
very fine grid or on the Faxén analytical approximation [29].
δ1 and δ2 reflect the worst and best location of the grid relative
to the boundary. They will be slightly larger than the obligate
minimal error δ0, because of the missing flexibilities to freely
adjust each individual amplitude ci . δ0, δ1, and δ2 were evalu-
ated using MATLAB (The Mathworks Inc., Nantucket, MA).

2.4. Generalization of the Claverie approach to spatially
non-uniform grids

We examined a generalization of the Claverie approach to
a static, but non-equidistant grid. We focused on the case with
high ratio s/D (high molar mass) that is numerically more dif-
ficult and time-consuming to solve, but for which in practice
back-diffusion can usually be safely neglected (and reliably pre-
dicted). We considered the notion that the obligate minimum
discretization errors Eqs. (10) and (11) will depend on the rela-
tive boundary spread, which takes the form Eq. (9). The steepest
boundary possibly encountered in the data analysis occurs when
the sedimentation boundary is at the left fitting limit r∗

1 . We de-
termined the spacing between neighboring points at this point
to be �r0(r

∗
1 ) = σ/α, where the σ is the boundary width calcu-

lated by Eq. (9), and α is a factor that determines the number of
grid points per boundary width. (We note that a constant value
of α, the obligate segmentation error will remain approximately
constant independent of the experimental configuration: for ex-
ample, values of α = 5 provide ∼25 points across the central
90% of the boundary height, which can describe boundaries
usually with a relative accuracy on the order of ∼0.001, see
below.) At radial points above r∗, in order to provide a constant
algorithm for the simulation of sedimentation velocity profiles in analytical
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ratio σ/α as the boundary moves through the solution column,
we chose the interval between neighboring points �ri to in-
crease according to

(12a)�ri = �r0

⎧⎨
⎩

1 for r � r∗
1√

r∗
1 (ri−m)

ri (r
∗
1 −m)

else

with

(12b)�r0 = σ

α
= 1

αω

√
RT

Mb

× (r∗
1 − m)

r∗
1

It follows that the grid positions are determined by

(12c)ri =
⎧⎨
⎩

m for i = 1
b for i = N

m + ∑i
j=2 �ri else

and this recipe then determines the total number of grid-points
N needed, based on the pre-set choice of α. An example for the
radial distribution of grid points generated by Eq. (12) can be
discerned from the pattern of vertical lines in Fig. 2.1 The ma-
trix elements B, A(1), A(2) required for this choice of grid can
be calculated with the expressions we reported previously for
non-uniform grids and the adjustments for semi-infinite solu-
tion columns [42,59].

2.5. Dynamic division of active and inactive grid points

With the grid according to Eq. (12), for experimental con-
figurations commonly encountered in practice, the increase in
grid spacing can be ∼10-fold. Thus, once the sedimentation
boundary has moved further into the solution and has depleted
the meniscus region, the majority of grid points would remain
at locations with negligible solute concentrations. The follow-
ing strategy can alleviate this computational inefficiency: We
note that χ(r, t) without back-diffusion is monotonically de-
creasing with time at all radius values, and at any point in time
χ(r, t) is monotonically increasing in radius. At a time-point
t ′, we search for the highest radial point r ′ where the concen-
tration values has fallen below a threshold value that can be
safely considered to be zero without significant impact on ac-
curacy (safely below the required accuracy, e.g. c(r ′) < c0 × ε,
with ε = 10−4–10−6). Because χ(r < r ′, t > t ′) < χ(r ′, t ′) all
concentration values at smaller radii and later times will be neg-
ligible. The range of radius values r ′ for which this condition
is true will start near the meniscus and continuously grow to
higher radius values.

To take advantage of this, we devised modifications of the
standard algorithms for the tridiagonal matrix operations for
the case that only the elements between N ′ and N of the con-
centration vectors are nonzero. This allows to eliminate most
(though not all) of the matrix operations for all grid points
within ri < r ′(t). Essentially, in this way, the computationally
utilized portion of the grid shrinks with time as the boundary

1 For interpretation of the references to color, the reader is referred to the web
version of this article.
Please cite this article in press as: P.H. Brown, P. Schuck, A new adaptive grid-size
ultracentrifugation, Computer Physics Communications (2007), doi:10.1016/j.cpc.
moves away and leaves the meniscus region behind in the sol-
vent plateau.

Analogously, it is possible to utilize the analytically trivial
concentration value of the solution plateau (Eq. (4)): First, a
consequence of the absence of back-diffusion is that for any ra-
dius values r ′′ where the concentration is within a pre-set accu-
racy from the solution plateau (i.e., cp(t)−χ(r ′′, t) < c0 × ε) it
is χ(r > r ′′, t) > χ(r ′′, t) and therefore any radius value higher
than r ′′ will be even closer to the plateau (i.e., cp(t) − χ(r >

r ′′, t) < c0 × ε). Second, we note that with the boundary condi-
tion for the semi-infinite solution column it is in fact irrelevant
where the simulated bottom position is located, as long as it is
within the plateau region. Therefore, we can shorten the simu-
lation to the grid points at radii smaller than r ′′, i.e. to points ri
with i < N ′′, by modification of the propagation matrix to per-
meable boundary conditions at N ′′. This eliminates all opera-
tions for i > N ′′. Within the pre-set accuracy, the concentration
values at r > r ′′ (i > N ′′) can be substituted by the analytically
calculated plateau value. With the progress of sedimentation,
this upper limit N ′′ should be moved to larger values. This was
implemented so that once less than 10% of the solution col-
umn are within ε of the plateau value, N ′′ will be increased by
0.1 × N . When time-dependent rotor speeds occur, due to the
consideration of rotor acceleration, the expression Eq. (4) for
the solution plateau can be replaced by a differential form for
radial dilution per time-increment. Eq. (4) does also not apply
for pressure-dependent sedimentation in compressible solvents,
but the analytic expressions for the solution ‘plateau’ in [61]
could in principle be used for the analytic extension of the dy-
namic grid.

As a consequence of the dynamic adjustment, only the por-
tion of the grid will be computationally utilized that is required
for the non-trivial portion of the concentration profile. This is
illustrated in Fig. 2. Initially, when the boundary is close to the
meniscus and small time-steps are required for stable solutions,
most of the grid throughout the solution column is switched off
and only the high-density portion needed for precise simulation
is active. As the boundary migrates away from the meniscus,
this region containing the density of grid points will be contin-
uously deactivated, and new points will be activated in a density
such that the broadened boundary encounters just sufficient grid
points to maintain the preset accuracy of simulation. Synchro-
nized with the boundary movement, the computational limit of
the semi-infinite column will move ahead until the data analysis
limit (or the real bottom of the cell) is reached.

3. Results

It is helpful to clarify first the measure of accuracy in the
simulations to be used, as well as the accuracy and useful radial
range in the experimental data. The goal of modern sedimenta-
tion velocity analysis by direct modeling of LE solution is not
merely to determine the average sedimentation rate and bound-
ary midpoint, but to extract detailed information on the sedi-
menting solutes from the shape of the sedimentation boundary.
As a consequence, our measure of goodness for the numerical
approximation of the LE solutions will be the maximum devia-
algorithm for the simulation of sedimentation velocity profiles in analytical
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Fig. 2. Spatial distribution of the radial grid and the evolution of active and inactive grid points. The grid is taken from the example discussed in Fig. 7, where
N = 100 points are used to describe sedimentation of a 10 S, 450 kDa protein in a solution column from 6.5 to 7.2 cm. For the data analysis limits at 6.51 cm and
7.165 cm (blue dashed lines), Eq. (12) results in grid points indicated by the vertical lines. Dependent on the position of the sedimentation boundary, grid points that
are active (differing by more than 10−4 from both solvent and solution plateaus) are shown in red. The inactive grid points, shown in black, do not require numerical
computation. The evolution of the concentration profile is indicated by the vertical axis, which denotes the iteration steps (A) or time (B and C), respectively. The
division of active and inactive is dynamically adjusted (bold red lines), leaving less than half of the points active throughout the simulation. In panels B and C, the
dotted line indicates the boundary midpoint. Panel C provides an expanded view for early times and radii close to the meniscus. It should be noted that the grid
spacing between 6.5 cm and 6.51 cm is constant at �r0 (Eq. (12b)), before increasing in a manner following diffusional broadening (Eq. (12a)).
tion from the true solution in the sedimentation boundary. This
is superior as a measure of error to the root-mean-square devi-
ation (rmsd) across the whole sedimentation column: The latter
can exhibit more than 90% of data points in the solvent and so-
lution plateaus (Fig. 1), which are trivial to predict (Eq. (4)),
and therefore the rmsd value can be misleadingly low, even
though the errors in representing the boundary shape may be
unacceptably far above the experimental error (see also the dis-
cussion).

In typical SV experiments, the noise in the data acquisition
is between 0.003–0.01 (OD units for absorbance optical data, or
fringe shift units for interference optical data), and loading con-
centrations are on the order of unity such that a benchmark for
the maximum relative deviation to remain below 0.001 seems to
be a necessary conservative criterion. The radial increments of
Please cite this article in press as: P.H. Brown, P. Schuck, A new adaptive grid-size
ultracentrifugation, Computer Physics Communications (2007), doi:10.1016/j.cpc.2
digitally stored data points are >0.0007 cm (<1500 data points
per scan for a 10 mm solution column), which sets an upper
limit for the smoothness in the curvature of the fitting functions
required in the data analysis.

From the point of view having practical data analysis in
mind, it is important to consider the radial range for which
reliable experimental data are available. Obviously, the theo-
retical errors of the LE solutions will be irrelevant outside this
radial range. Because of optical artifacts close to the meniscus,
the data analysis typically cannot start at values smaller than
r∗

1 = m + 0.01 cm, a value assumed in the following (see dis-
cussion below). For the maximum radius, following common
practice in sedimentation analysis we concentrated on the case
where back-diffusion is absent within the radial range of data
analysis (except when dealing with very small molecules), and
algorithm for the simulation of sedimentation velocity profiles in analytical
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chose the maximum radius accordingly. For medium and large
proteins, the extent of back-diffusion decays rapidly with in-
creasing distance from the bottom of the solution column. For
example, in the configuration in Fig. 4A below, the amplitude
of signal arising from back-diffusion at a radius b − 0.5 mm is
0.003, and it is below 0.001 at b−0.6 mm. (As described previ-
ously, the sedimentation equilibrium profiles Eq. (3) are upper
limits for χF (r, t) and can therefore be used to predict whether,
at the maximum radius considered in the data analysis, back-
diffusion may need to be considered or the LE can be solved
for a semi-infinite solution column.)

A premise of all currently used numerical solutions of the LE
is the approximation of the concentration profiles by piece-wise
linear segments. This is accomplished through the approxima-
tion by piece-wise linear elements (e.g., triangular hat function,
Eq. (5)). This motivated us to examine the error incurred with
this segmented representation when applied to a curve shaped
like a sedimentation boundary. As a reference curve, we chose
a smooth boundary taken from the simulated sedimentation of
a 100 kDa protein at t = 1770 sec (Fig. 3A). Fig. 3B shows the
maximum error from a piece-wise linear approximation depen-
dent on the density of grid points. For convenience, we scaled
the grid point density relative to our measure of the boundary
width σ defined in Eq. (9). The red lines in Figs. 3A and 3B
were calculated allowing the concentration values at each grid
point to freely minimize the maximum deviation δ0 (Eq. (10)),
i.e. without any constraints from any context with LE solutions.
The solid red line shows the error encountered with the best
relative lateral shift of the grid relative to the boundary, and the
dotted line represents the worst-case relative position of grid to
boundary. In order to explore what might happen if the concen-
tration values at the grid points are constrained to be computed
from LE algorithm, we also calculated the analogous quanti-
ties δ1 and δ2 encountered when the concentration values fall
exactly on the ‘true’ curve (blue lines in Figs. 3A and 3B).
Clearly, for a coarse grid, the errors are very significant and
above the noise in the ultracentrifugal data acquisition, while
for finer grids with α-values greater than approximately 5, the
errors are below our threshold.

In order to examine the discretization error when solving the
LE, we generated first a reference solution with very fine grid
(total number of grid points N = 10,000), using sedimentation
parameters and sample geometry as could be encountered in
practice for the 100 kDa protein (Fig. 4A). Next, we examined
the accuracy of the LE solution obtained at different time-points
with different grid spacings. Fig. 4B shows the residuals to the
reference solution obtained when using a grid of N = 100. Very
similar patterns are observed when using either the Claverie or
the moving hat method. It can be discerned that the largest devi-
ations occur closer to the meniscus and for scans that are earlier
in time, i.e. scans exhibiting steeper sedimentation boundaries.
This observation holds true for all cases, except for very high
N where the maximum errors are <0.001 throughout. Further,
a scalloped pattern can be discerned, suggesting the residuals
to arise from the approximation of a curved line by piece-wise
linear segments. This suggests that the simple geometric con-
straints introduced when using coarse grids may be a significant
Please cite this article in press as: P.H. Brown, P. Schuck, A new adaptive grid-size
ultracentrifugation, Computer Physics Communications (2007), doi:10.1016/j.cpc.
Fig. 3. Theoretical deviation of a segmented piece-wise linear approximation
to a smooth sedimentation boundary. (A) As a reference boundary, the concen-
tration profile of a 100 kDa, 6 S—species sedimenting for 1770 sec at a rotor
speed of 50,000 rpm was computed with a very fine grid (black line). Assuming
a constant distance between neighboring grid points given by the expression σ

(Eq. (9)) (which corresponds to value of α = 1, or approximately 6 points avail-
able to describe the transition from solvent to solution plateau), the best possible
boundary approximation with piece-wise linear segments is shown as red dot-
ted line (optimizing the concentration values at each grid point to minimize the
largest vertical deviation). The maximum deviation at the most favorable lateral
offset of the grid relative to the boundary is termed δ0 (Eq. (10)), and represents
the obligate error, a lower limit that any numerical LE solution will have to
exceed. The blue line shows the segmented boundary representation when the
concentration values at the grid points are constrained to the true values at these
grid points. This deviation is δ1 or δ2 (Eq. (11)), and is larger than δ0. The inset
shows an expanded view of the leading edge of the boundary. (B) The devia-
tions from the smooth boundary change as a function of grid interval, plotted in
units of α. Shown are the maximum deviations when the concentration values
at the grid points are held at the ‘true’ value of the smooth curve, for the best
and worst possible relative position of grid and boundary midpoint (δ2 and δ1,
blue solid and dotted lines), respectively. The obligate error δ0, when the con-
centration values are not held to the smooth curve, is shown as red solid line.
For comparison, also shown is this error at the worst possible relative position
of grid to boundary midpoint (dotted red line).

contributor to the observed deviations. To this end, we calcu-
lated the obligate error from discretization δ0, as well as δ1 and
δ2, for each time-point. The bold dotted and dashed lines in
Fig. 4B show these errors across the boundaries when plotted
as a function of boundary midpoint. The close correspondence
further supports that the simple discretization errors may be
the dominant limitations in the accuracy of the LE solution at
coarse grids.
algorithm for the simulation of sedimentation velocity profiles in analytical
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Fig. 4. (A) Concentration profiles calculated for a 100 kDa protein with a sedimentation coefficient of 6 S sedimenting at ω = 50,000 rpm in a 10 mm solution
column (m = 6.2 cm, b = 7.2 cm). Under these conditions, back-diffusion does not extend into the data range shown. In order to serve as a reference solution,
the LE was solved on a fine grid with N = 10,000 using the standard Claverie algorithm without consideration of rotor acceleration. The time-intervals between
the boundaries shown are 300 sec, mimicking experimental data acquisition of scans at discrete times. For clarity, the concentration profiles at selected times are
highlighted: 300 sec (red), 600 sec (blue), 4500 sec (cyan), and 7800 sec (green). (B) The difference to the reference solution when the LE solution is calculated on
a coarse grid with N = 100, using the standard Claverie algorithm. The maximum deviation of ∼0.0085 occurs for the first ‘scan’ (red line), the boundary with the
highest slope. For comparison, the bold black lines show the theoretical deviations from the representation of the boundaries as piece-wise linear segments, requiring
the concentrations at the grid points to be identical to the true solution (δ2 in Eq. (11), dotted line), or to be freely optimized (δ0 in Eq. (10), dashed line). (C) On
the same scale, the difference to the reference solution when the LE solution is calculated with the new algorithm using the placement of grid-points according to
Eq. (12b), at the same total number of initial grid points N = 100. (With α = 3.63, this resolution does not quite meet the more conservative goal of α = 5, which
would require N = 137 points and have a maximum deviation of 0.00065.) The dynamic reduction of grid points in the solvent plateau leads to the use of only 31
grid points at the time of the latest scan shown.
We then examined how the maximum deviation changes for
different grids and different sedimentation parameters. For the
sedimentation parameters of Fig. 4, the green dotted line in
Fig. 5A shows the observed values as a function of grid den-
sity. In order to maintain the required accuracy indicated by the
black dotted horizontal line, a grid interval of less than 0.004 cm
Please cite this article in press as: P.H. Brown, P. Schuck, A new adaptive grid-size
ultracentrifugation, Computer Physics Communications (2007), doi:10.1016/j.cpc.2
(or a total grid number of N = 250 for the 10 mm column, see
top axis) is required. A slightly finer grid is required when sed-
imentation is simulated (for both the reference and the coarse
grid) considering the acceleration of the rotor (green solid and
dashed lines). The Claverie algorithm using the equidistant grid
(solid line) and the moving hat algorithm with the logarith-
algorithm for the simulation of sedimentation velocity profiles in analytical
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Fig. 5. Errors of numerical LE solution for different sedimentation parame-
ters and grids. (A) Maximum deviation as a function of grid interval, or total
grid size N for a 10 mm column, respectively. Shown are simulations based on
the Claverie algorithm with equidistant grid (solid lines) and/or moving hat al-
gorithm with logarithmically spaced grid following Eq. (8) (dashed lines) for
particles with: 1 kDa, 0.3 S, 50,000 rpm (black); 10 kDa, 1.5 S, 50,000 rpm
(blue); 100 kDa, 6S, 50,000 rpm (green), 450 kDa, 10 S, 60,000 rpm (magenta),
and 1 MDa, 30 S, 50,000 rpm (cyan). The simulated sedimentation included a
rotor acceleration phase with dω/dt = 200 rpm/sec, except for one compari-
son with the 100 kDa species indicated as thin green dotted line, which did not
include rotor acceleration. In all calculations, a LE solution was calculated as
a reference, with the same parameters, on a very fine grid with N = 10,000.
The maximum deviation from coarse-grid simulation was observed in the ra-
dial range excluding the 0.01 cm closest to the meniscus, and excluding the
back-diffusion region (except for the smallest species). The benchmark of the
desired maximum error of 0.001 is indicated as black dotted line. (B) The same
data plotted as a function of α, the ratio between minimum boundary width σ

and grid interval. σ was determined as described in Eq. (9). The colors and line-
types are unchanged. Additionally, the bold dash-dotted lines are the maximum
deviations observed using the new algorithm with optimized non-equidistant
grid Eq. (12).

mically spaced grid (dashed line) show very similar results.
Analogously, we examined the maximum deviations for a range
of sedimentation parameters, mimicking particles of increasing
size and boundary steepness. For very small, rapidly diffus-
ing particles, coarse grids are sufficient (e.g., 0.016 cm for the
1 kDa particle), while for very large, slowly diffusing particles
that form steep boundaries, very fine grids are required (e.g.,
0.0008 cm for the 1 MDa particle). In practice, this poses the
difficulty of automatically choosing an appropriate discretiza-
Please cite this article in press as: P.H. Brown, P. Schuck, A new adaptive grid-size
ultracentrifugation, Computer Physics Communications (2007), doi:10.1016/j.cpc.
tion that neither is wasteful in computation time, nor leads to
unacceptably large errors.

Based on the hypothesis developed above that the major con-
tributing factor to the deviations are the obligate errors arising
from the segmented piece-wise linear approximation, we plot-
ted the observed deviations from Fig. 4A as a function of α, i.e.
the ratio of smallest boundary width (as determined from the
fitting limit close to the meniscus, see Eq. (9) above) to the grid
interval, which determines the number of points available to de-
scribe the curvature of the boundary. This is shown in Fig. 4B.
Consistent with our hypothesis, and remarkably similar to the
theoretical obligate error without solving the LE, for all sed-
imentation processes simulated the deviation scales in a very
similar way, with an acceptable maximum deviation of 0.001
for values of α between 4–6. This corresponds to between 24–
36 discrete points that are required to describe the transition
between the solvent and solution plateaus of the smooth sedi-
mentation boundary with sufficient accuracy. This observation
can be used to provide a rational prediction of the most effi-
cient, yet still acceptable grid density. As implemented in the
program SEDFIT, the default value is α = 5.2

Since the major limiting factor for the accuracy of the nu-
merical LE solution appears to be the spatial discretization
relative to the boundary width, we attempted to exploit this
observation to construct an optimal grid with a density that is
adequate for the steepest boundary close to the meniscus, and
then continually decreases in density such that the diffusing
boundary will be modeled by approximately a constant num-
ber of grid points. The scheme Eq. (12) outlined above has
these properties. As can be anticipated from the significant drop
in the obligate error as a function of radius (dotted lines in
Fig. 4B), assuming an optical artifact close to the meniscus
covering 0.01 cm, in this scheme the grid spacing at the end
of a 10 mm solution column is 9.3-fold larger than in the be-
ginning. This translates into a grid that for the same α-value
requires approximately fivefold fewer grid points. In combina-
tion with the scheme described above to inactivate grid points
once the boundary has migrated across and they are not needed
anymore, this algorithm will be more than fivefold faster. Con-
versely, when using the same total number of grid points N , the
improved spacing of the grid points provides an increase in the
α-value by a factor of five.

In order to establish the correct implementation of this al-
gorithm, we first verified that for all simulations the results
correctly converged to the previously calculated fine-grid ref-
erence solutions when using a very high number of grid points
(data not shown). Next, we tested its performance by applying it
to our reference sedimentation in Fig. 4, using the same number
of total grid points (N = 100). While the traditional equidistant
grid provides an α-value of 0.73 and the residuals in Fig. 4B,
the optimized grid at N = 100 corresponds to α = 3.63 and

2 It should be noted that the lower limit of grid interval for which this con-
sideration applies is given by the interval between experimental data points.
However, the interval between experimental data points is typically smaller than
the interval between grid points for adequate numerical solutions of the Lamm
equation.
algorithm for the simulation of sedimentation velocity profiles in analytical
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provides the residuals shown in Fig. 4C. It can be discerned
that the magnitude of the residuals is much smaller. Whereas
the standard Claverie algorithm has a maximum error ∼0.0085,
the new algorithm has a maximum error of ∼0.001. Interest-
ingly, the residuals show a more uniform distribution across the
cell, with the scalloped residual pattern increasing in distance
but not in height (Fig. 4C). This shows the grid design was
successful in providing constant discretization relative to the
diffusionally broadened boundary. For the time range shown in
Fig. 4, the simulation starts with 8% of the grid points active,
never exceeding 70%, and for last concentration profile only
31% of the grid points remain active, which shows that the dy-
namic reduction of grid size is also highly effective. This gain
is independent of the α-value.

We re-analyzed the sedimentation of different size particles
using the new algorithm at different α-values. For small parti-
cles, where back-diffusion is shallow and cannot be excluded,
the new algorithm performed slightly worse than the standard
Claverie algorithm with equidistant grid. (For example, for the
10 kDa particle, a grid with total size N = 145 provides a max-
imum deviation of 0.0024 with the new algorithm, but 0.0018
with the equidistant grid.) The lack of gain in accuracy is due
to presence of back-diffusion, which produces similarly steep
boundaries close to the bottom as are encountered close to the
meniscus, and this cannot be appropriately matched by the con-
tinuously sparser grid in the new algorithm. Further, the ability
to scale the discretization according to α breaks down in the
presence of back-diffusion. This is a reminder that the error
analysis and the grid design described in the present paper was
based on the absence of back-diffusion. However, the gradients
in the sedimentation profiles of small particles are relatively
shallow throughout, and the standard algorithms pose no dif-
ficulty and are already highly efficient (see the black and blue
lines in Fig. 5A).

In contrast, when back-diffusion is localized to the bottom
of the cell and the boundary conditions for semi-infinite col-
umn can be used, the theoretical predictions on which the new
algorithm is based hold true. As shown by the dash-dotted lines
in Fig. 5B, despite the approximately five-fold reduction of grid
size N throughout, for a given α value the accuracy is similar to
that with the larger equidistant grid, and the maximum deviation
follows the predicted values. When comparing grids of similar
size N , again, the gain in accuracy is very significant. For ex-
ample, for the 1 MDa particle the simulated sedimentation with
N = 269 using the new algorithm provides a maximum devia-
tion of 0.001 (α = 5), whereas with the moving hat algorithm
a maximum deviation of 0.12 is obtained (α ∼ 1). At a slightly
finer grid with N = 385, the new algorithm generates a maxi-
mum deviation of 0.0007 (α = 7) versus 0.011 (α ∼ 1.5) with
the standard moving hat algorithm. We conclude that the new
optimized grid eliminates the need for computationally very
costly high total number of grid points, while providing a pre-
dictably high accuracy.

Finally, we compared the results with the ASTFEM finite el-
ement approach proposed by Cao and Demeler [43]. Instead of
eliminating the steep back-diffusion region exhibited by large
macromolecules, Cao and Demeler placed a higher density of
Please cite this article in press as: P.H. Brown, P. Schuck, A new adaptive grid-size
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Fig. 6. Accuracy of simulated sedimentation obtained with Cao and Demel-
er’s ASTFEM method for a model system of a particle with s = 10 S,
D = 2 × 10−7 cm2/sec (corresponding, for example, to an elongated 450 kDa
protein with f/f0 ∼ 2.0) sedimenting at 60,000 rpm in a 7 mm solution col-
umn from 6.5 cm to 7.2 cm. This is Fig. 8B from Cao and Demeler [43],
reproduced with permission. It shows the boundary approximations with the
ASTFEM method at different grid size values N for the same sedimentation
parameters. The red line is the simulated boundary at a value of N = 100. For
comparison, the calculated sedimentation boundaries with the same parameters
using the new non-equidistant static grid finite element algorithm are shown in
Fig. 7B.

grid points into the back-diffusion region. They observed that
the ASTFEM method is stable for sedimentation of very large
particles even when using very coarse grids, such as N = 100—
numerical discretization parameters for which both the standard
Claverie and the moving hat methods are not designed and
show instabilities—while reporting only minor differences be-
tween the algorithms when using larger grid sizes for the same
sedimentation parameters. Because Cao and Demeler did not
consider the regions of steepest gradients in their measure of
goodness of fit (excluding both the 5% of data points closest to
the meniscus and the 5% closest to the bottom), we re-examined
their results in the light of the criteria developed in the present
study and compared them to the results with the new method
proposed here.

As one benchmark model system, Cao and Demeler used
a model system of a particle with s = 10 S and D = 2 ×
10−7 cm2/sec sedimenting at 60,000 rpm, for which the sedi-
mentation boundaries at different grid sizes are shown in Fig. 6
(which is reproduced from Fig. 8B in [43]). Although the AST-
FEM approach provides stability at coarse grids, very large
errors are encountered (e.g. red line in Fig. 6 for N = 101).
Despite the exclusion of the first 0.035 cm from consideration,
the maximum error at N = 101 was ∼0.03, dropping to ∼0.01
at N = 201 [43]. In none of the examples shown in [43] was
the maximum error below our threshold of acceptable accuracy.
This result is consistent with our predictions on the obligate er-
rors at grids as coarse as those in [43].

Fig. 7 shows the concentration profiles encountered for the
same sedimentation parameters using the new generalized dy-
namic Claverie method for semi-infinite solution column with
algorithm for the simulation of sedimentation velocity profiles in analytical
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Fig. 7. Sedimentation profiles calculated for the same parameters as in Fig. 6.
(A) Reference concentration profiles were computed with a very fine grid
(N = 10,000), shown in time-intervals of 100 sec (black line). The concen-
tration scale is truncated, and reaches values >900 at the bottom, but quickly
decays with increasing distance from the bottom, e.g. 1000-fold within 0.01 cm
of the bottom. Also shown as dashed red line is the LE solution with the new
non-equidistant, static grid algorithm with N = 100 (corresponding to α = 1.7)
eliminating back-diffusion by placing the left and right analysis limits r∗

1 and
r∗
2 at 6.51 cm and 7.165 cm, respectively. Over this radial range, the maxi-

mum error to the data shown is 0.0043. The dynamic reduction of grid points
in the solvent plateau leads to the use of only 20 points at the time of the last
scan shown. (B) Focusing on selected early time-points, this plot is showing
the ‘true’ boundary (bold black line) and the same LE solution at N = 100 and
N = 200 with the non-equidistant grid (red line and thin white line within the
red, respectively). The segmentation of even the red N = 100 line cannot be
easily discerned visually (e.g. from the uneven thickness of the black rim in
the leading shoulders caused by the piece-wise linear red line within the black,
and by the red rim caused by the thin white N = 200 line within the red line).
Nevertheless, as expected, for N = 100 at α = 1.7 the discretization is not yet
regarded sufficient as judged by the maximum deviation of 0.0043 between r∗

1
and r∗

2 . The standard accuracy of 0.001 for modeling experimental data requires
approximately N = 300 grid points. The errors at N = 100 are approximately
20 fold smaller at r∗

1 than those seen in Fig. 6 at the same grid size with Cao
and Demeler’s ASTFEM method. The difference is due to the placement of
the highest density of the radial grid points in the latter method close to the
bottom to stabilize computation of the back-diffusion region, whereas in the
generalized Claverie method with non-equidistant grid the highest density is
found where the steepest sedimentation boundaries occur. For comparison, the
step-functions Eq. (4) are shown as gray lines. These have a maximum devia-
tion of 0.49, but an rmsd of only 0.041.

static, non-equidistant grid, with the left and right analysis lim-
its r∗

1 and r∗
2 placed at 6.51 and 7.165 cm, respectively. For this

system, the standard accuracy of 0.001 (α = 5) for modeling
experimental data would require approximately N = 300 initial
grid points. However, for comparison with Fig. 6, we calculated
the concentration profiles when the grid size was constrained
to the same N = 100 total points (red dotted line in Fig. 7A
and solid red line in Fig. 7B). This corresponds to α = 1.7, and
resulted in a maximum error of 0.0043. From visual compari-
son of Fig. 6 and 7B over the same radial range, an improved
accuracy by more than an order of magnitude can be easily dis-
cerned. At the same time, the dynamic reduction of grid points
leads to the elimination of 80% of the grid points at the time
point of the last scan shown in Fig. 7A, and the elimination of
greater than 50% of the grid points at any time-point.

4. Discussion

In the last decade, the ability to solve efficiently the partial
differential equation for sedimentation, diffusion, and chem-
ical reactions in the centrifugal field has transformed exper-
imental approaches and the data analysis in analytical ul-
tracentrifugation. It has significantly improved detection lim-
its and resolution, and our ability to quantitatively describe
complex sedimentation processes of macromolecular mixtures.
In particular, the convenient use of LE solutions as model
function in non-linear regression and/or as kernels in Fred-
holm integral equations enabled many new techniques, includ-
ing direct boundary modeling with distributions of LE solu-
tions, and direct boundary modeling with systems of LEs with
chemically reacting species, which found wide-spread appli-
cation in physical biochemistry, for example, in the study of
protein–protein interactions [46,49,59,71], the detection of im-
munogenic oligomeric species of protein pharmaceuticals [10–
13], global multi-signal sedimentation velocity analysis of re-
versible multi-protein complexes [23,57,72–74], and other ap-
plications [52].

Many different algorithms for numerically solving the LE
have been described over four decades [34,36,41–43,46,59,63,
75,76], and their further development is still a topic of active
investigation since it is critical for many practical applications
[21]. Recently, we have noted that the boundary conditions for
a permeable bottom (leading to the model of a semi-infinite so-
lution column) can facilitate significantly the LE solution by
removing numerical instabilities arising in the steep gradient of
the back-diffusion region. This was introduced first as a tool
to stabilize the system of LEs describing the sedimentation of
chemically reacting mixtures of macromolecules [59], but later
also applied to simplify the LE solution of non-interacting, ide-
ally sedimenting species [56]. Clearly, back-diffusion cannot
be excluded when describing the sedimentation of small mole-
cules, where the radial range of back-diffusion is broad and
extends significantly into the solution column. However, in this
case the gradients are shallow and pose no difficulty experimen-
tally or computationally. For large particles, however, the extent
of back-diffusion is confined to a narrow region close to the bot-
tom of the cell and has to be excluded from consideration in the
Please cite this article in press as: P.H. Brown, P. Schuck, A new adaptive grid-size
ultracentrifugation, Computer Physics Communications (2007), doi:10.1016/j.cpc.
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practical data analysis, because: (1) it cannot be imaged reliably
due to the refractive index gradients; (2) the high concentrations
encountered would make the consideration of repulsive forces
between macromolecules indispensable; and (3) the solubility
limit of many proteins is exceeded, leading to a phase transition
and generation of surface films that will substantially alter the
back-diffusion. The decision whether or not to exclude back-
diffusion is usually not further problematic, since its extent can
be visually discerned from the experimental traces, and in the-
ory an upper limit for the radial range of back-diffusion it can
be easily predicted for any set of sedimentation parameters and
automatically compared to the radial range of experimental data
to be considered [56].3

Having eliminated one of the numerically problematic fea-
tures of sedimentation profiles for large macromolecules using
the permeable boundary conditions, in the current paper we
have reappraised the accuracy of different finite element algo-
rithms for the remaining problem of simulating sedimentation
in the semi-infinite column. Based on our findings, we propose
a series of modifications of the original Claverie approach that
leads to approximately an order of magnitude or more improved
accuracy and efficiency for solving the LE.

Perhaps the most striking observation was that for the semi-
infinite solution column, both finite element models predict
surprisingly accurate concentration values at the spatial grid
points. For the parameter range tested with particles up to 30 S
(and with at least several grid points available for the steep-
est boundary) few differences were observed between the per-
formance of the moving hat and the Claverie approach. This
suggests that, at least for ideally sedimenting non-interacting
species, the advantage of the moving hat algorithm reported
previously [42,43] may be due to improved stability in the back-
diffusion region, a factor removed in the current study (see
above).

Cao and Demeler have suggested that the Claverie finite
element approach suffers from the problem of ‘numerical dif-
fusion’ [43]. This is in conflict with the results presented here.
We believe Cao and Demeler have misinterpreted their find-
ings: Numerical diffusion is an effect that occurs in finite dif-
ference schemes due to the combination of fast translation of
the boundary described with large spatial increments (i.e. high
Péclet numbers) [41,64]. It is noteworthy that the errors ob-
served by Cao and Demeler were strongly dependent on the
time step �t [43]. However, a hallmark of numerical diffu-
sion is that it cannot be eliminated by reducing the time-step.
Indeed, an analytical expression for the excess ‘numerical dif-
fusion’ �D = sωr�r/2 encountered in naïve finite difference
schemes has been given already by Goad and Cann [35] (consis-
tent with our observation �D ∼ sω�r reported in [41]). Goad
and Cann also gave a prescription to minimize it either by di-

3 Modeling a mixture of small and large macromolecules with a sedimen-
tation coefficient distribution poses no difficulty in this regard. The experi-
mentally observed back-diffusion will be considered when solving the Lamm
equation for the small species, but still can be automatically ignored when solv-
ing the Lamm equation for the large species, dependent on fitting limits and the
position of the bottom of the solution column.
Please cite this article in press as: P.H. Brown, P. Schuck, A new adaptive grid-size
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minishing the radial grid interval �r , using higher-order accu-
racy schemes for the gradients determining the fluxes, or using
grids with moving frame of reference [35]. We do see numer-
ical diffusion with simple finite difference approaches because
of the low approximation of the spatial derivatives of the con-
centration profile [35,41,64], however, this effect is absent in
the finite element approach using hat functions, because the lat-
ter naturally can describe the spatial derivatives much better,
equivalent to a forth-order compact finite difference approxi-
mation [64]. We believe the poor numerical results observed by
Cao and Demeler were caused by a poor choice of large time-
steps causing negative concentrations, an effect which we can
reproduce (data not shown) but is easily eliminated by appro-
priate adaptive time-step management.4

In fact, we found the accuracy of the Claverie finite element
propagation scheme is so high that, for obtaining the accu-
racy required in experimental data analysis, the chief limitation
arises not from the properties of the LE, but rather from the sim-
ple error of approximating the smooth boundary by piece-wise
linear functions! This error is not at all dependent on the al-
gorithm for computing the evolution of concentration values at
the grid points, but is an obligate geometric consequence of us-
ing linear basis elements. Although it seems an obvious concern
in retrospect, to our knowledge, this source of error has previ-
ously not been systematically appreciated in the LE literature,
possibly because it has been masked by larger numerical errors
in the back-diffusion region—which are now removed in the
semi-infinite column. However, even in the study by Cao and
Demeler where numerical errors in the back-diffusion region
were minimized [43], the large obligate errors obtained from
too coarse grids (e.g., Fig. 6) were not recognized or addressed.
It should be noted that this error is not artificially introduced in
this theoretical study but highly relevant in practice, since the
typical grid density used to compute the LE solutions are lower
than the density of experimental data points, and also lower than
the radial resolution of the optical systems, and therefore are
of concern when the experiment involves conditions that lead
to the observation of steep concentration gradients. In regard
to the latter, the new algorithm described in the present pa-
per adaptively adjusts the prediction of maximum concentration
gradients that need to be considered according to the relative lo-
cation of meniscus and first data point r∗

1 to be modeled.
In examining this obligate error of LE solutions from lin-

ear segmentation, we find it most instructive to focus on the
maximum deviation incurred in the sedimentation boundary,
as opposed to the overall rmsd, since the data points in the
solvent and solution plateau are trivial, and their contribution
confounds the analysis and provides misleadingly low error val-

4 In reproducing the numerical results in [43], we found that the errors ob-
served at coarse grids are caused by the too large fixed time-steps causing
negative concentrations when the boundary is peeling off the meniscus. The
choice of time-steps in [43] was based on time-steps designed for the mov-
ing hat algorithm (Eq. (14) in [43]), which is generally a poor choice for use
with the Claverie algorithm. In our hands, the errors observed in [43] are easily
removed with appropriate adaptive time-steps, which are smaller initially and
increase with time [67]. This pitfall of too large time-steps has been described,
for example, by Goad and Cann [35].
algorithm for the simulation of sedimentation velocity profiles in analytical
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ues (see below). This also corresponds well to the judgment of
the quality of fit in practice, where the bitmap representation
of the residuals [55] has proven to be a highly useful tool to
emphasize the quality of fit at each time-point in the sedimen-
tation boundaries. Clearly, computed LE solutions that show
excellent accuracy in the solvent and solution plateau, but ex-
hibit large numerical inaccuracies just in the representation of
the boundary shape, will not be suitable for use in detailed
data analysis in practice. When analyzing experimental data,
the accuracy in the boundary shape is indispensable, for exam-
ple, when deconvoluting diffusion in order to achieve higher
resolution sedimentation coefficient distributions [53,54], char-
acterizing trace species [15–18,77], determining molar masses
and size-and-shape distributions [56], or when studying chem-
ically reacting species and their equilibria and kinetics [46,49,
59,71].5

Our observation that the largest errors occur with the steepest
boundaries near the meniscus close to the beginning of the sed-
imentation seems to coincide with occasional reports of large
deviations in the fit of experimental scans from the beginning
of the run close to the meniscus. Whether or not the latter can be
attributed to errors in the LE solution certainly depends on the
grid size used in the computation. While some of the grid sizes
suggested recently by Cao and Demeler [43] are too coarse for
large macromolecules (Fig. 6, see Results section above), the
default settings in SEDFIT are conservatively designed to lead
to grid size that warrant a default numerical accuracy in the
sedimentation boundary better than the noise of data acquisi-
tion. Considering that the steepest boundaries in the beginning
of a run are also most susceptible to experimental imperfec-
tions, chiefly convection, we believe experimental factors to be
usually limiting. This is corroborated by the observation that
with SEDFIT fits within the noise of data acquisition can be
routinely achieved.

Recognizing that, for the semi-infinite solution column, the
grid density relative to the boundary width (the α-value) is a
factor that can scale uniformly the maximum errors involved
in the discretization, we have used simple physical consider-
ations to rationally predict the computationally most parsimo-
nious grid size required to ensure a pre-set accuracy. We found
that for a given geometry of the solution column the product
ω×√

M or ω×√
s/D scales the total number of grid points re-

quired. This is different from the empirical scaling relationships
described by Cao and Demeler, suggesting that N be largely in-
dependent of s, but N ∼ D−1/4 [43]. The different observations
may be due to the problematic choice of the rmsd (or more pre-
cisely the L2-norm over the central 90% of the solution column)
as a measure of error, and perhaps due to the effects that back-
diffusion has on the numerical accuracy in their algorithm.

Although the finite element method as introduced by
Claverie was described with equidistant grid points, it can be

5 For cases where the shape of the diffusion broadened boundary is not of
interest, such as extremely large particles that do not exhibit significant diffu-
sion on the time-scale of sedimentation, the representation of sedimentation by
step-functions Eq. (3) is comparatively trivial to calculate, and can be used for
sedimentation coefficient distributions [69].
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naturally extended to arbitrarily placed spatial grid points, when
the general expressions for the matrix elements given in [42] are
used. We have exploited this possibility to generate a grid that
has the highest density where the steepest gradients in the semi-
infinite column are encountered, following the expressions for
the estimated increase in boundary width as a function of ra-
dius. It is implemented in SEDFIT adaptively adjusting to the
given sedimentation and diffusion coefficients, rotor speed and
acceleration, and radial range to be modeled. Even though the
moving hat method also exhibits a slightly higher density closer
to the meniscus, imposed by its inherent symmetry require-
ments, the change across the solution column is much stronger
in the new method, which uses the considerations of obligate
error from the approximation with piece-wise linear elements
to predict the optimal grid spacing. An alternative approach to
strongly diminish the obligate error while maintaining coarse
grids would be the use of quadratic, or other curved, elements
replacing the hat functions. However, this would lead to more
complicated band matrices to be solved at each time step, off-
setting some of the advantage [64].

Following the idea of Cao and Demeler [43], with the sta-
tic non-equidistant grid approach one could also place more
grid points in the region close to the bottom region. However,
we did not pursue this since for the configurations exhibiting
shallow back-diffusion, when a description of back-diffusion is
needed, the standard Claverie algorithm works very efficiently
and accurately in our hands, and for configurations exhibiting
steep back-diffusion the permeable boundary condition elimi-
nates numerical problems in this region without extra compu-
tational cost. In fact, the dynamic inactivation of grid points
permits the entire leading solution plateau to be dynamically
eliminated from the computation and replaced by the trivial an-
alytical computation of solution plateaus.

We also did not further explore the application of more
complex time-dependent grids. The continuous dynamic in-
activation of the higher density portion of the grid once the
boundary has passed is a new approach that has little compu-
tational overhead and provides very satisfactory results. Simi-
larly, the inactivation of points in the solution plateau facilitated
by the boundary condition for the semi-infinite solution col-
umn is straightforward, and in combination, the two approaches
generate a dynamically changing active set of grid points that
maintains an optimal density of points while co-migrating with
the sedimentation boundary.

In conclusion, based on a detailed error analysis and sim-
ple physical principles, we have developed a new finite element
method for solving the LE on a semi-infinite solution column,
using a static, non-equidistant grid optimized for achieving a
uniform pre-set accuracy, in conjunction with adaptive time-
steps in Crank–Nicholson scheme and in combination with a
novel approach for dynamic inactivation of grid points in the
trivial regions of the solvent and solution plateau. From our ex-
perience so far, we believe it outperforms existing algorithms
by approximately an order of magnitude or more in computa-
tion time or accuracy, not in the least because it can estimate
the minimal grid size necessary to achieve a preset accuracy,
if measured by the maximum deviation in the sedimentation
algorithm for the simulation of sedimentation velocity profiles in analytical
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boundary. This can benefit several areas where the computa-
tion of LE solutions is still posing constraints. For example,
this principle can be applied to systems of coupled LEs for
chemically reacting species [46,49,59,71], which are signifi-
cantly more difficult to compute, and where the large com-
putation time for the LE solutions is currently still affecting
practical non-linear regression in global modeling. For using
LE solutions as kernels in integral equations for sedimenta-
tion coefficient distributions [53,54] and size-and-shape distri-
butions [56], the operations connected to the handling of the
typically very large number of experimental data points are
frequently the most time consuming [53]. However, when ra-
dial pre-averaging is applied to reduce the number of experi-
mental data points, fast and precise LE solutions can become
limiting. This is important, for example, for embedding sed-
imentation coefficient distributions into non-linear regression
of additional parameters, such as one or more scaling para-
meters for the frictional ratio f/f0 for mixtures of globular
macromolecules, or the persistence length for distributions of
linear macromolecules, and/or geometric parameters of the so-
lution column [54]. Other applications where the calculation
of LE solutions are still the limiting factor are the modeling
of macromolecular sedimentation in the presence of dynamic
density gradients formed by sedimenting co-solutes [58], and
the modeling of sedimentation of macromolecular distributions
at high concentrations under non-ideal conditions (P. Brown
and P. Schuck, manuscript in preparation). The latter topics are
of increasing interest in the characterization by sedimentation
velocity of protein therapeutics and their formulations with re-
gard to trace contents of immunogenic aggregates, which is an
area of emerging importance [15–18,78]. They are of impor-
tance also, for example, for the detailed analysis of proteins in
the presence of high concentrations of co-solvents stabilizing or
de-stabilizing the conformation. Since the LE solutions are the
key to the detailed quantitative interpretation of sedimentation
velocity experiments, their more efficient and accurate calcu-
lation may also facilitate other more advanced applications of
analytical ultracentrifugation to the study or macromolecules in
solution and their interactions.

Acknowledgements

This work was supported by the Intramural Research Pro-
gram of the National Institutes of Health.

References

[1] T. Svedberg, K.O. Pedersen, The Ultracentrifuge, Oxford University Press,
London, 1940.

[2] T. Svedberg, R. Fahraeus, A new method for the determination of the
molecular weight of the proteins, J. Am. Chem. Soc. 48 (1926) 320–438.

[3] H.K. Schachman, Ultracentrifugation in Biochemistry, Academic Press,
New York, 1959.

[4] R. Signer, H. Gross, Ultrazentrifugale Polydispersitätsbestimmungen an
hochpolymeren Stoffen, Helv. Chim. Acta 17 (1934) 726.

[5] M. Meselson, F.W. Stahl, The replication of DNA in Escherichia coli,
Proc. Natl. Acad. Sci. USA 44 (1958) 671.

[6] R.F. Steiner, Reversible association processes of globular proteins. V. The
study of associating systems by the methods of macromolecular physics,
Arch. Biochem. Biophys. 49 (1954) 400–416.
Please cite this article in press as: P.H. Brown, P. Schuck, A new adaptive grid-size
ultracentrifugation, Computer Physics Communications (2007), doi:10.1016/j.cpc.2
[7] D. Schubert, C. Tziatzios, P. Schuck, U.S. Schubert, Characterizing the
solution properties of supramolecular systems by analytical ultracentrifu-
gation, Chem. Eur. J. 5 (1999) 1377–1383.

[8] G.M. Pavlov, N. Errington, S.E. Harding, E.V. Korneeva, R. Roy,
Molecular and structural characteristics of lactodendrimers based on
poly(amidoamine), Polymer Sci. Ser. A 43 (2001) 118–123.

[9] E. Kasemi, W. Zhuang, J.P. Rabe, K. Fischer, M. Schmidt, M. Co-
lussi, H. Keul, D. Yi, H. Colfen, A.D. Schluter, Synthesis of an anioni-
cally chargeable, high-molar-mass, second-generation dendronized poly-
mer and the observation of branching by scanning force microscopy,
J. Am. Chem. Soc. 128 (2006) 5091–5099.

[10] M.D. Lechner, W. Mächtle, Modern methods for determining the mo-
lar mass distribution of polymers. General considerations and application
to sedimentation equilibrium, Makromol. Chem., Makromol. Symp. 61
(1992) 165–175.

[11] V. Vogel, K. Langer, S. Balthasar, P. Schuck, W. Machtle, W. Haase,
J.A. van den Broek, C. Tziatzios, D. Schubert, Characterization of serum
albumin nanoparticles by sedimentation velocity analysis and electron mi-
croscopy, Prog. Colloid Polymer Sci. 119 (2002) 31–36.

[12] M. Calabretta, J.A. Jamison, J.C. Falkner, Y. Liu, B.D. Yuhas, K.S.
Matthews, V.L. Colvin, Analytical ultracentrifugation for characterizing
nanocrystals and their bioconjugates, Nano Lett. 5 (2005) 963–967.

[13] S.A. Berkowitz, J.S. Philo, Monitoring the homogeneity of adenovirus
preparations (a gene therapy delivery system) using analytical ultracen-
trifugation, Anal. Biochem. (2006).

[14] Y.F. Mok, G.J. Howlett, Sedimentation velocity analysis of amyloid
oligomers and fibrils, Methods Enzymol. 413 (2006) 199–217.

[15] S.J. Shire, Z. Shahrokh, J. Liu, Challenges in the development of high pro-
tein concentration formulations, J. Pharmaceutical Sci. 93 (2004) 1390–
1402.

[16] J. Liu, J.D. Andya, S.J. Shire, A critical review of analytical ultracentrifu-
gation and field flow fractionation methods for measuring protein aggre-
gation, Aaps J. 8 (2006) E580–E589.

[17] S.A. Berkowitz, Role of analytical ultracentrifugation in assessing the ag-
gregation of protein biopharmaceuticals, Aaps J. 8 (2006) E590–E605.

[18] J.P. Gabrielson, M.L. Brader, A.H. Pekar, K.B. Mathis, G. Winter, J.F.
Carpenter, T.W. Randolph, Quantitation of aggregate levels in a recombi-
nant humanized monoclonal antibody formulation by size-exclusion chro-
matography, asymmetrical flow field flow fractionation, and sedimentation
velocity, J. Pharm. Sci. 96 (2006) 268–279.

[19] J. Lebowitz, M.S. Lewis, P. Schuck, Modern analytical ultracentrifugation
in protein science: a tutorial review, Protein. Sci. 11 (2002) 2067–2079.

[20] A. Balbo, P. Schuck, in: E. Golemis, P.D. Adams (Eds.), Protein–Protein
Interactions, Cold Spring Harbor Laboratory Press, Cold Spring Harbor,
New York, 2005, pp. 253–277.

[21] G.J. Howlett, A.P. Minton, G. Rivas, Analytical ultracentrifugation for the
study of protein association and assembly, Curr. Opin. Chem. Biol. 10
(2006) 430–436.

[22] D.J. Scott, P. Schuck, in: D.J. Scott, S.E. Harding, A.J. Rowe (Eds.), Mod-
ern Analytical Ultracentrifugation: Techniques and Methods, The Royal
Society of Chemistry, Cambridge, 2006, pp. 1–25.

[23] P. Schuck, in: P. Schuck (Ed.), Biophysical Approaches for the Study of
Complex Reversible Systems, Springer, New York, 2007, pp. 469–518.

[24] O. Lamm, Die Differentialgleichung der Ultrazentrifugierung, Ark. Mat.
Astr. Fys. 21B (2) (1929) 1–4.

[25] W.J. Archibald, A demonstration of some new methods of determining
molecular weights from the data of the ultracentrifuge, J. Phys. & Colloid.
Chem. 51 (1947) 1204–1214.

[26] H. Faxén, Über eine Differentialgleichung aus der physikalischen Chemie,
Ark. Mat. Astr. Fys. 21B (1929) 1–6.

[27] H. Fujita, V.J. MacCosham, Extension of sedimentation velocity theory to
molecules of intermediate sizes, J. Chem. Phys. 30 (1959) 291–298.

[28] J.W. Williams, Ultracentrifugal Analysis, Academic Press, New York,
1963.

[29] H. Fujita, Foundations of Ultracentrifugal Analysis, John Wiley & Sons,
New York, 1975.

[30] L.A. Holladay, An approximate solution to the Lamm equation, Biophys.
Chem. 10 (1979) 187–190.
algorithm for the simulation of sedimentation velocity profiles in analytical
007.08.012



ARTICLE IN PRESS COMPHY:3425
JID:COMPHY AID:3425 /FLA [m5+; v 1.78; Prn:11/10/2007; 10:24] P.16 (1-16)

16 P.H. Brown, P. Schuck / Computer Physics Communications ••• (••••) •••–•••

.

[31] M. Dishon, G.H. Weiss, D.A. Yphantis, Numerical simulations of the
Lamm equation: III. Velocity centrifugation, Biopolymers 5 (1967) 697–
713.

[32] M. Dishon, G.H. Weiss, D.A. Yphantis, Numerical solutions of the Lamm
equation. VI. Effects of hydrostatic pressure on velocity sedimentation of
two-component systems, J. Polym. Sci. 8 (1970) 2163–2175.

[33] M. Dishon, G.H. Weiss, D.A. Yphantis, Kinetics of sedimentation in a
density gradient, Biopolymers 10 (1971) 2095–2111.

[34] D.J. Cox, Computer simulation of sedimentation in the ultracentrifuge. IV.
Velocity sedimentation of self-associating solutes, Arch. Biochem. Bio-
phys. 129 (1969) 106–123.

[35] W.B. Goad, J.R. Cann, Theory of sedimentation of interacting systems,
Ann. NY Acad. Sci. 164 (1969) 172–182.

[36] D.J. Cox, R.S. Dale, in: C. Frieden, L.W. Nichol (Eds.), Protein–Protein
Interactions, Wiley, New York, 1981.

[37] R. Cohen, J.M. Claverie, Sedimentation of generalized systems of inter-
acting particles. II. Active enzyme centrifugation—theory and extensions
of its validity range, Biopolymers 14 (1975) 1701–1716.

[38] J.S. Philo, An improved function for fitting sedimentation velocity data for
low molecular weight solutes, Biophys. J. 72 (1997) 435–444.

[39] J. Behlke, O. Ristau, Molecular mass determination by sedimentation ve-
locity experiments and direct fitting of the concentration profiles, Biophys.
J. 72 (1997) 428–434.

[40] J. Behlke, O. Ristau, A new approximate whole boundary solution of the
Lamm differential equation for the analysis of sedimentation velocity ex-
periments, Biophys. Chem. 95 (2002) 59–68.

[41] P. Schuck, C.E. MacPhee, G.J. Howlett, Determination of sedimentation
coefficients for small peptides, Biophys. J. 74 (1998) 466–474.

[42] P. Schuck, Sedimentation analysis of noninteracting and self-associating
solutes using numerical solutions to the Lamm equation, Biophys. J. 75
(1998) 1503–1512.

[43] W. Cao, B. Demeler, Modeling analytical ultracentrifugation experiments
with an adaptive space–time finite element solution of the Lamm equation,
Biophys. J. 89 (2005) 1589–1602.

[44] B. Kindler, PhD Thesis, University Hannover, Hannover, Germany, 1997.
[45] C. Urbanke, B. Ziegler, K. Stieglitz, Complete evaluation of sedimentation

velocity experiments in the analytical ultracentrifuge, Fresenius Z. Anal.
Chem. 301 (1980) 139–140.

[46] W.F. Stafford, P.J. Sherwood, Analysis of heterologous interacting sys-
tems by sedimentation velocity: curve fitting algorithms for estimation
of sedimentation coefficients, equilibrium and kinetic constants, Biophys.
Chem. 108 (2004) 231–243.

[47] B. Demeler, H. Saber, J.C. Hansen, Identification and interpretation of
complexity in sedimentation velocity boundaries, Biophys. J. 72 (1997)
397–407.

[48] P. Schuck, www.analyticalultracentrifugation.com, 2007.
[49] P. Schuck, On the analysis of protein self-association by sedimentation

velocity analytical ultracentrifugation, Anal. Biochem. 320 (2003) 104–
124.

[50] P. Schuck, www.analyticalultracentrifugation.com/sedphat/sedphat.htm,
2007.

[51] P. Schuck, B. Demeler, Direct sedimentation analysis of interference op-
tical data in analytical ultracentrifugation, Biophys. J. 76 (1999) 2288–
2296.

[52] P. Schuck, http://www.analyticalultracentrifugation.com/references.htm,
2007.

[53] P. Schuck, Size distribution analysis of macromolecules by sedimentation
velocity ultracentrifugation and Lamm equation modeling, Biophys. J. 78
(2000) 1606–1619.

[54] P. Schuck, M.A. Perugini, N.R. Gonzales, G.J. Howlett, D. Schubert, Size-
distribution analysis of proteins by analytical ultracentrifugation: strate-
gies and application to model systems, Biophys. J. 82 (2002) 1096–1111.

[55] J. Dam, P. Schuck, Calculating sedimentation coefficient distributions by
direct modeling of sedimentation velocity profiles, Methods Enzymol. 384
(2004) 185–212.

[56] P.H. Brown, P. Schuck, Macromolecular size-and-shape distributions
by sedimentation velocity analytical ultracentrifugation, Biophys. J. 90
(2006) 4651–4661.
Please cite this article in press as: P.H. Brown, P. Schuck, A new adaptive grid-size
ultracentrifugation, Computer Physics Communications (2007), doi:10.1016/j.cpc.
[57] A. Balbo, K.H. Minor, C.A. Velikovsky, R. Mariuzza, C.B. Peterson, P.
Schuck, Studying multi-protein complexes by multi-signal sedimentation
velocity analytical ultracentrifugation, Proc. Natl. Acad. Sci. USA 102
(2005) 81–86.

[58] P. Schuck, A model for sedimentation in inhomogeneous media. I. Dy-
namic density gradients from sedimenting co-solutes, Biophys. Chem. 108
(2004) 187–200.

[59] J. Dam, C.A. Velikovsky, R. Mariuzza, C. Urbanke, P. Schuck, Sedimen-
tation velocity analysis of protein–protein interactions: Lamm equation
modeling and sedimentation coefficient distributions c(s), Biophys. J. 89
(2005) 619–634.

[60] J. Lebowitz, M. Teale, P. Schuck, Analytical band centrifugation of pro-
teins and protein complexes, Biochem. Soc. Transact. 26 (1998) 745–749.

[61] P. Schuck, A model for sedimentation in inhomogeneous media. II. Com-
pressibility of aqueous and organic solvens, Biophys. Chem. 187 (2004)
201–214.

[62] P. Schuck, Z. Taraporewala, P. McPhie, J.T. Patton, Rotavirus nonstruc-
tural protein NSP2 self-assembles into octamers that undergo ligand-
induced conformational changes, J. Biol. Chem. 276 (2000) 9679–9687.

[63] A.P. Minton, Simulation of the time course of macromolecular separations
in an ultracentrifuge. I. Formation of a cesium chloride density gradient at
25 ◦C, Biophys. Chem. 42 (1992) 13–21.

[64] D.R. Durran, Numerical Methods for Wave Equations in Geophysical
Fluid Dynamics, Springer, New York, 1999.

[65] D.J. Cox, Calculation of simulated sedimentation velocity profiles for self-
associating solutes, Methods Enzymol. 48 (1978) 212–231.

[66] P. Schuck, http://www.analyticalultracentrifugation.com/LammEqSolutions
htm, 2007.

[67] M. Dishon, G.H. Weiss, D.A. Yphantis, Numerical solutions of the Lamm
equation. I. Numerical procedure, Biopolymers 4 (1966) 449–455.

[68] J.-M. Claverie, H. Dreux, R. Cohen, Sedimentation of generalized sys-
tems of interacting particles. I. Solution of systems of complete Lamm
equations, Biopolymers 14 (1975) 1685–1700.

[69] P. Schuck, P. Rossmanith, Determination of the sedimentation coefficient
distribution by least-squares boundary modeling, Biopolymers 54 (2000)
328–341.

[70] J. Crank, P. Nicholson, A practical method for numerical evaluation of so-
lutions of partial differential equations of the heat-conduction type, Proc.
Cambridge Philos. Soc. 43 (1947) 50–67.

[71] J. Dam, P. Schuck, Sedimentation velocity analysis of protein–protein
interactions: Sedimentation coefficient distributions c(s) and asymptotic
boundary profiles from Gilbert–Jenkins theory, Biophys. J. 89 (2005) 651–
666.

[72] K.H. Minor, C.R. Schar, G.E. Blouse, J.D. Shore, D.A. Lawrence, P.
Schuck, C.B. Peterson, A mechanism for assembly of complexes of vit-
ronectin and plasminogen activator inhibitor-1 from sedimentation veloc-
ity analysis, J. Biol. Chem. 31 (2005) 28711–28720.

[73] J.C. Houtman, H. Yamaguchi, M. Barda-Saad, A. Braiman, B. Bowden,
E. Appella, P. Schuck, L.E. Samelson, Oligomerization of signaling com-
plexes by the multipoint binding of GRB2 to both LAT and SOS1, Nat.
Struct. Mol. Biol. 13 (2006) 798–805.

[74] R.K. Deka, C.A. Brautigam, F.L. Tomson, S.B. Lumpkins, D.R. Tom-
chick, M. Machius, M.V. Norgard, Crystal structure of the Tp34 (TP0971)
lipoprotein of treponema palladium: Implications of its metal-bound
state and affinity for human lactoferrin, J. Biol. Chem. Epub. (2007),
M610215200.

[75] W.B. Goad, J.R. Cann, V. Chemically interacting systems. I. Theory of
sedimentation of interacting systems, Ann. NY Acad. Sci. 164 (1969)
192–225.

[76] J.-M. Claverie, Sedimentation of generalized systems of interacting par-
ticles. III. Concentration-dependent sedimentation and extension to other
transport methods, Biopolymers 15 (1976) 843–857.

[77] A.S. Solovyova, M. Nollmann, T.J. Mitchell, O. Byron, The solution struc-
ture and oligomerization behavior of two bacterial toxins: pneumolysin
and perfringolysin O, Biophys. J. 87 (2004) 540–552.

[78] A.S. Rosenberg, Effects of protein aggregates: an immunological perspec-
tive, Aaps J. 8 (2006) E501–E507.
algorithm for the simulation of sedimentation velocity profiles in analytical
2007.08.012

http://www.analyticalultracentrifugation.com
http://www.analyticalultracentrifugation.com/sedphat/sedphat.htm
http://www.analyticalultracentrifugation.com/references.htm
http://www.analyticalultracentrifugation.com/LammEqSolutions.htm
http://www.analyticalultracentrifugation.com/LammEqSolutions.htm

	A new adaptive grid-size algorithm for the simulation of sedimentation velocity profiles in analytical ultracentrifugation
	Introduction
	Methods
	Solutions of the Lamm equation
	Estimating the maximal observed boundary spread
	Estimating the minimum obligate error from the representation of a smooth boundary with piece-wise linear segments
	Generalization of the Claverie approach to spatially non-uniform grids
	Dynamic division of active and inactive grid points

	Results 
	Discussion
	Acknowledgements
	References


