Sedimentation Velocity Analysis
of Interacting Systems
using c(s)

Peter Schuck



simulated sedimentation of rapidly self-association systems

- large amount of data
- for fast reactions: provides information on complete isotherm of s (c) for range of ¢ < ¢,__,




Boundary shapes for a heterogeneous reaction with different binding kinetics
= effect of protein size

A+B €&-2AB, concentration equimolar at 3K,
with koff = 1e-2, 1e-3, 1e-4, 1e-5

A =30 kDa, B = 50 kDa

A =90 kDa, B = 150 kDa

bimodal boundary for 2component mixture

smaller size diminishes characteristic features from reaction kinetics



Boundary shapes for a heterogeneous reaction with different binding kinetics
= c(s) curves from slow to fast reactions
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c(s) curves can be used to diagnose kinetic regime

J. Dam, C.A. Velikovsky, R.A. Mariuzza, C. Urbanke, P. Schuck (2005) Sedimenetation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and
sedimentation coefficient distributions c(s).



Boundary shapes for a heterogeneous reaction with different binding kinetics
=> limitations

—>diffusion does reduce information on kinetics, reaction scheme, therefore small proteins will

be more difficult

—> interpretation of boundary broadening is exquisitely sensitive to everything that made already
the determination of molar mass difficult: (micro)-heterogeneity, multiple conformations,

glycosylation

— sensitivity only over a narrow range of time-constants, given by the sedimentation time: best

for~104-10-3/sec

- describing kinetic models possible, but depend on parameters that are frequently ill-defined

by the experiment

- need less detailed models, which permit to quantitatively analyze interactions in SV

based on the strength of SV: separation in mixtures

J. Dam, C.A. Velikovsky, R.A. Mariuzza, C. Urbanke, P. Schuck (2005) Sedimenetation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and
sedimentation coefficient distributions c(s).



RV

c(s) curves from analysis of self-association and hetero-association

slow (0.00005/sec) fast (0.005/sec)

self-association

hetero-association

s-value (S)

c(s) analysis of reaction boundary may result in broad distribution

rms error can go up

apparent f/f; may be smaller than real f/f, (sometimes < 1)

for slow systems, c(s) gives peak positions of species

for fast systems, c(s) gives undisturbed boundary and approximations of asymptotic reaction boundary



Boundary shapes for a heterogeneous reaction with different binding kinetics
= c(s) curves from slow to fast reactions
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c(s) curves can be used to diagnose kinetic regime

c(s) shows either populations of species, or something in between

- how does this work?

—>peak s-values do not coincide well with species s-values — why?

- what do these curves mean, and how can they be used quantitatively?



‘Constant Bath’ Approximation:
Krauss, Pingoud, Boehme, Riesner, Peters, Maass. Eur. J. Biochem. (1975)

Example: A + B €> AB

ot ror\ or r or y

ob 10 b 210/ >

— =D | —|r—| |- ———(r°b

ot b{r@r(rﬁrﬂ %® r@r(r )+qb
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system of Lamm equations

what if A was small and would not exhibit a spatial gradient? da/Or =0 fast reaction > dc/or = Kadb/or

ob oc 1o ob

10
add Lamm eq. for b + ¢ % % (D, + KaDc){;g(”gﬂ — (s + Kas, )’ ;5(rzb)+ dp + 4.
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. _ Dy + KaD, * _ S + Kas,

=>» non-interacting single-species Lamm equation D , S
1+ Ka 1+ Ka

J. Dam, C.A. Velikovsky, R.A. Mariuzza, C. Urbanke, P. Schuck (2005) Sedimenetation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and
sedimentation coefficient distributions c(s).



‘Constant Bath’ Approximation:
« cannot be strictly fulfilled, since A, B, and C are always in mass action law equilibrium
—> there will be a gradient of A.

—> how large is this gradient?
—> can this be a realistic and useful limiting case for protein-protein interactions?
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—> indeed the first boundary is of free A

—> there is free A in the fast boundary

—> there is some gradient of free A

- however: free A changes from 76 to 97 % where free B goes from 10 to 90% =» mass action
law causes the fractional occupation of B (i.e. C/(B+C)) to vary only between 30 to 35% —> this
means that the gradient in A does not lead to a big change in the ‘pseudo-species B+C’
constituting the fast boundary in the the constant bath theory. Therefore, overall description
good.

(the dispersion in s caused by the finite range of C/(B+C) does show up in a slight increase in D;
how to treat the dispersion in terms of range of s-values will be topic of Gilbert-Jenkins theory
later)

—> the big result here is that, in a first approximation, diffusion of the reaction boundary is
very similar to that of a single species.
—> consistent s-values of the fast boundary with s* from ‘constant bath’ theory
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Gilbert & Jenkins, Nature, 1956

Boundary Problems in the Sedimentation
and Electrophoresis of Complex Systems in
Rapid Reversible Equilibrium

linear geometry and radial-independent force

2
% _poa_, %

E_ ! 6x2 ox

The reaction fluxes j, follow mass conservation with j, = j, = —j. =/, and it
is assumed that all species are in instantaneous equilibrium following mass
action law

CACBK :CC

A change of variables from spatial and time coordinates x and ¢ to the
velocity v = x/t and the inverse time w = 1/t

2 .
(v—vl-)%—i-w %4_1)[801- ——J
ov ow o2 %

the limit of infinite time (w — 0)

=) S = (=) S = -y

which can be solved for ¢ (v), cy(v), c(v)
—> stable boundaries with asymptotic Schlieren patterns ds/dv

j =2 0 with w 2 0 = “no net reaction at infinite time”
(Gilbert & Jenkins, Proc. Royal Soc. London A, 1959)




summarized by Fujita (1975

P . i Sel
274 SEDIMENTATION TRANSPORT IN CHEMICALLY REACTING SYSTEMS

with ¢’ given as the root of equation 4.115. Thus, in this case, the region
between the lower edge and x'(r) of the sedimentation boundary is a
uniform solution of B only. :

If @ <0, the lower edge of the boundary is located at the “unperturbed”

boundary position of species A, that is, x=u,t, and the concentralion
distributions between this position and x'(¢) are given by

. = ‘!-"
7] cosh® 5

(4.122)

where ¢ is the root of equation 4.116. Hence, in this case, the region
considered is filled with a uniform solution of A only.

2. Tllustrations of the Gilbert-Jenkins Asymptotic Solutions

Inspection of the expression presented above reveals that if the variable
£ defined by equation 4.105 is used as the abscissa, the concentration
distribution of each solute species represented by the Gilbert-Jenkins
asymptotic solutions is transformed to a “reduced” curve which is inde-
pendent of time and is governed by three parameters: A, C,%/k, and
Cy"/k. The remaining parameters Uy, ug, and ue are absorbed into £ and
o S

In the upper sections of Figs. 4.10a and 4,106 are shown the “reduced”
concentration distributions of A, B, and AB (=C) for two systems in
which A is the same (=5) but the set of values of C,%/k ;uul-('n“_.-"k i
different. For these values of the basic parameters, the constant ® is
negative for the system (a) and positive for the system (b). The lower
sections of Figs. 4.10a and 4.10b show the corresponding distributions of
total refractive index gradients, calculated on the assumption that the three
species have the same specific refractive index increment. The dashed lines
in these graphs indicate the “unperturbed” boundary positions (expressed
in terms of x /1) for the three species.

Of the many interesting features displayed by these theoretical curves
the following points are worthy of special mention.

I. It is observed how greatly the position and shape of the gradient
curve are affected by the occurrence of a chemical reaction in the system.

2. _The gradient curve is separated into two distinct regions, one being
infinitely sharp and the other being broad and spreading over a range,

COMPLEX FORMATION
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Fig. 4.10. Theoreticg distribdtions of concentfations of individfal solute speciesfA, B, C)
and total refractive inflex gradfents in diffusion-free reac§ng systefns of the type A} B=C in
which up < uy < uc(d) Cp\°/ Kkl 1.5, Cy°/k=085. () C¥/ k=10, Cx°/ k=0.5.

Sp S Sc s, Sg Sc
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3. The spreading boundary is single-peaked or double-peaked, depend-
ing on the initial concentrations of A and B and on the equilibrium
constant K (or k). In either case, the position of each peak does not
correspond to the mobility of any solute species present in the solution.

The appearance of two peaks does not mean the existence of two solutes in
the spreading boundary. In fact, three solute species coexist in this region.

4. The infinitely sharp boundary moves at a slower rate than the
spreading boundary. but this rate does not necessarilv equal the mobility
of the slowest species B. It mav be equal to_the rate intrinsic to species A,
depending on the initial concentrations of A and B and on the equilibrinm
constant.

These characteristics of the theoretical gradient curves add another
example to the warning that it is extremely hazardous to draw conclusions
from sedimentation velocity experiments by formal application of the
traditional procedures when a chemical interaction between solutes may be
suspected.

quantitative application in AUC has been largely dormant:
difficulty in measuring asymptotic boundary; computational limitation at the time




—> c(s) approximately deconvolutes diffusion from reaction boundaries > D ~ 0

- Gilbert-Jenkins theory predicts diffusion-free asymptotic boundaries at D = 0

=» should be equivalent !

J. Dam, P. Schuck (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Sedimentation coefficient distributions c(s) and
asymptotic boundary profiles from Gilbert-Jenkins theory.



0.25

0.2

D]

absorbange [O

0.05

c(S)

equimolar mixture

0.1 —

9 170 11
s-value (S)

12

13

c(Kp) 1

0.3
0.1

meW 1

W\ T

ﬂ M VWV\,M
M ”/M"“‘ M‘/
h MM“Mc

m
Adid

™

W%\/m Al

‘N MM ‘H‘\ﬁ“v‘

N NW ‘AWM@V /NW

w‘

'\V Y




—_
—_

—_

o absorbance [OD]
o0 =)

9

S
=N

equimolar mixture

02 T T T

|

) .
9 10 11 12 13
s-value (S)

c(Kp) 1

0.3
0.1

T T A I

e ./ ~ hia

ol

J

VAN AN A i, A A A AN A

My
ol

AN

LABLIN e e B B B




absorbance [OD]
(93

c(S)

equimolar mixture

0.2 | |

9 1?0
s-value (S)

11

12

3

c (Kp) 1 -

0.3 1

0.1

T T T T T T T T T T T

T T T T T [ T T T T [ T T T T | T 1T




absorbance [OP]
TR Rt

—
|

(=)
Ll

c(S)

equimolar mixture

0.2

0.0

| .

|
9 1?0
s-value (S)

11

12

c(Kp) 11

0.3 1

0.1

W
Ly




c(S)

equimolar mixture

0.2 : ,

0.0 AI

| .

!

|
o o
s-value (S)

11

12

—
W
|

(=]

absorbance. [OD]

W




—_
W

absorbance [OD]

larger species constant at K,

0.2 T T T T T T

01 =

0.0 — . | . | T | | | {
6 8 9 10 11 12 13

s-value (S)

c (Kp) 1
0.3
0.1

'Y

AN NS VA SN




—

5

absorbance [OD]

(S)

larger species constant at K,

0.2

0.0

C(KD) 11

0.1
1 | | | A

9 1?0 11 12 13
s-value (S)

AN A AN NN A A N WA A PN AN A A AN A

A AN A A A AN A




absorbance [OD]
(93

c(S)

larger species constant at K,

0.2

0.0

l T l T T T
10 T
— 3 l
c(Kp) 11
- 0.3
0.1
[ 1 | I 1 | ! A
9 1?0 11 12 ‘ITS
s-value (S)

T T T T T T T T T T T

T T T T T [ T T T T [ T T T T | T 1T




c(S)

larger species constant at K,

0.2

0.0

| .

~by

|
9 1TO
s-value (S)

11

12

13

C(KD) 11

0.3 1

0.1 -

— absorbance [OD].,
|

0




absorbance,[OD]

(=]
I

c(S)

larger species constant at K,

0.2

0.0

10 ]
pu— 3-
c (Kp) 1]
- 0.3
0.1 -
) I S —— A 1 A B
; 9 1TO 11 12 13
s-value (S)




absorbance [OD]
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—> pretty consistent, enough to convince conceptually OK
—> but not 100% identical (maximum entropy regularization, linear Lamm equation model)

how to utilize that quantitatively?

= INTEGRATE weight-average s-value of of boundary components, and amplitudes
=» compare with theoretical values from GJT, also integrated

corresponds to a BOUNDARY SHAPE analysis without requirements of Lamm equation modeling

« in global model with weight-average
* in global model with different signals/wavelengths

J. Dam, P. Schuck (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Sedimentation coefficient distributions c(s) and
asymptotic boundary profiles from Gilbert-Jenkins theory.



what do we do with C(S) curves?
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THEORY - what to expect? - sw is well-known

s,, approaches s, only for precise stoichiometry, otherwise far away



THEORY - this is s, from GJT

S;.st APProaches s,g in any case with ¢, or c; >> K,
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So far, examples have shown clearly separate boundaries.

- how does it work for a small species with high D?

... real test for deconvolution of diffusion in c(s)
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Ky = 3.3 uM,

c=03,1,3,10,30 uM
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Summary of c(s) analysis of reacting systems:

J c(s) approximately deconvolutes diffusion from reaction boundaries

. c(s) distributions are approximations of the asymptotic boundary from Gilbert-
Jenkins theory

. Gilbert-Jenkins modeling of c(s) can be quantitatively used to model isotherms of
reaction boundary, in addition to s, (c)

. higher confidence in Ky and s ;. yjex

o characteristic information on stoichiometry

. takes advantage of bimodal boundary structure, without need for detailed Lamm

eq. modeling (can of course be used, afterwards, too, using parameter estimates)

J. Dam, P. Schuck (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Sedimentation coefficient distributions c(s) and
asymptotic boundary profiles from Gilbert-Jenkins theory.



Summary of c(s) based analysis methods for reacting systems

second-moment method: mass balance

a) integrate all c(s) peaks at once
b)  model weight-average (signal-average) s, (c) with isotherm model

for fast reactions: bi-modal boundary according to Gilbert-Jenkins theory

a) integrate fast and slow c(s) peaks
b)  model signal-average s(c) of fast boundary with isotherm model
c) model amplitudes of fast and slow boundary with isotherm model

for slow reactions: baseline-separated peaks reveal species populations
a) integrate c(s) peaks individually
b)  species population isotherm

for heterogeneous interactions: global multi-signal analysis for multi-component c(s)
a) for determining stoichiometry of extended associations
b)  requires either k ; < 10/sec or ¢ > 3fold K,

* no detailed boundary shape info used
« can deal with impurities outside range of interacting system
» useful to build model (stoichiometry, K, , s )

D » Ycomplex

« concentration series = global modeling of isotherms



isotherm analysis

weight-average s-value s, (c

_ b

(o]
a ¢S;
Crot i

free free free | free
tor 1oty e cy Sut egcg spt (e t ep )Kei ey s p

i
Sy (CA »Cp tot tot
€4C 4y €pCp

tot free + chree free

Ca — €4 4 CB
tot _ | free free _ free
cg = cg T Kcy cp

0.1 1 C 0C . 1 10
total concentration (M) total concentration component B (M)

equimolar concentrations titration configuration

 only mass balance consideration, no boundary shape
* slow and fast

* s,,(c) for self-association/hetero-association

» stoichiometry for hetero-association

* Kp, limiting s-value

* Scomplex NYdrodynamic shape?



isotherm analysis
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« for ks < 104/sec

« exploit boundary shape to distinguish species
» for self-association/hetero-association

* Kp



isotherm analysis

Gilbert-Jenkins theory-based isotherms
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Sw,reaction (CA ,Cp

model based on

) ‘constant bath theory’ - diffusion of reaction boundary approximately like non-interacting species
o)) c(s) can approximately deconvolute diffusion from reaction boundary

c) prediction from Gilbert-Jenkins theory on asymptotic boundary (D = 0)

d) c(s) ~ asymptotic boundary
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« for ks > 10-3/sec

« exploit bimodal nature of boundary
» for hetero-association

* Kp

* Scomplex (Nydrodynamic shape)

sedimentation coefficient (S)




