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large amount of data
for fast reactions: provides information on complete isotherm of sw(c) for range of c < cload

simulated sedimentation of rapidly self-association systems



A+B AB, concentration equimolar at 3KD
with koff = 1e-2, 1e-3, 1e-4, 1e-5

Boundary shapes for a heterogeneous reaction with different binding kinetics 
effect of protein size

A = 30 kDa, B = 50 kDa

A = 90 kDa, B = 150 kDa

bimodal boundary for 2component mixture

smaller size diminishes characteristic features from reaction kinetics
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Boundary shapes for a heterogeneous reaction with different binding kinetics 
c(s) curves from slow to fast reactions

c(s) curves can be used to diagnose kinetic regime

J. Dam, C.A. Velikovsky, R.A. Mariuzza, C. Urbanke, P. Schuck (2005) Sedimenetation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and 
sedimentation coefficient distributions c(s). Biophysical Journal 89:619-634



Boundary shapes for a heterogeneous reaction with different binding kinetics 
limitations

diffusion does reduce information on kinetics, reaction scheme, therefore small proteins will 

be more difficult 

interpretation of boundary broadening is exquisitely sensitive to everything that made already 

the determination of molar mass difficult:  (micro)-heterogeneity, multiple conformations, 

glycosylation

sensitivity only over a narrow range of time-constants, given by the sedimentation time: best 

for ~ 10-4 - 10-3 /sec

describing kinetic models possible, but depend on parameters that are frequently ill-defined 

by the experiment

need less detailed models, which permit to quantitatively analyze interactions in SV 

based on the strength of SV: separation in mixtures

J. Dam, C.A. Velikovsky, R.A. Mariuzza, C. Urbanke, P. Schuck (2005) Sedimenetation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and 
sedimentation coefficient distributions c(s). Biophysical Journal 89:619-634



c(s) curves from analysis of self-association and hetero-association

self-association

hetero-association

slow (0.00005/sec) fast (0.005/sec)

⇒ c(s) analysis of reaction boundary may result in broad distribution
⇒ rms error can go up
⇒ apparent f/f0 may be smaller than real f/f0 (sometimes < 1)
⇒ for slow systems, c(s) gives peak positions of species
⇒ for fast systems, c(s) gives undisturbed boundary and approximations of asymptotic reaction boundary
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Boundary shapes for a heterogeneous reaction with different binding kinetics 
c(s) curves from slow to fast reactions

c(s) curves can be used to diagnose kinetic regime

c(s) shows either populations of species, or something in between 
how does this work?
peak s-values do not coincide well with species s-values – why?
what do these curves mean, and how can they be used quantitatively?



‘Constant Bath’ Approximation:
Krauss, Pingoud, Boehme, Riesner, Peters, Maass.  Eur. J. Biochem. (1975)
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Example: A + B AB

system of Lamm equations

coupled with reaction fluxes
qa = qb = – qc = konab – koffc

KD = kon/koff (KD = ab/c for instant. reaction)

what if A was small and would not exhibit a spatial gradient? 0a r∂ ∂ = c r Ka b r∂ ∂ = ∂ ∂fast reaction 
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non-interacting  single-species Lamm equation

J. Dam, C.A. Velikovsky, R.A. Mariuzza, C. Urbanke, P. Schuck (2005) Sedimenetation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and 
sedimentation coefficient distributions c(s). Biophysical Journal 89:619-634



‘Constant Bath’ Approximation:

• cannot be strictly fulfilled, since A, B, and C are always in mass action law equilibrium 
there will be a gradient of A.  

how large is this gradient? 
can this be a realistic and useful limiting case for protein-protein interactions?

address this questions using 
Lamm equation solutions for instantaneous reaction
of proteins A = 100 kDa, B = 200 kDa
sA = 7 S, sB = 10 S, sAB = 13 S
equimolar concentration at Kd = 10 uM
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two boundaries: 
• free A at 7 S
• reaction boundary

fit with 2 species model: 
s1 = 7.02 S (expect 7.0 S)
s2 = 11.15 S (s* = 11.14 S)
MA = 83.4 kDa (– 17 % )
MB = 198 kDa (– 25%)
rmsd = 0.0043

diffusion coefficients quantitatively not very precise, but s-values very good
excellent description – why?



indeed the first boundary is of free A
there is free A in the fast boundary
there is some gradient of free A
however:  free A changes from 76 to 97 % where free B goes from 10 to 90% mass action 

law causes the fractional occupation of B  (i.e. C/(B+C)) to vary only between 30 to 35%  this 
means that the gradient in A does not lead to a big change in the ‘pseudo-species B+C’
constituting the fast boundary in the the constant bath theory. Therefore, overall description 
good.
(the dispersion in s caused by the finite range of C/(B+C) does show up in a slight increase in D; 
how to treat the dispersion in terms of range of s-values will be topic of Gilbert-Jenkins theory 
later)

the big result here is that, in a first approximation, diffusion of the reaction boundary is 
very similar to that of a single species.

consistent s-values of the fast boundary with s* from ‘constant bath’ theory
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Gilbert & Jenkins, Nature, 1956
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A change of variables from spatial and time coordinates x and t to the 
velocity v = x/t and the inverse time w = 1/t
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which can be solved for cA(v), cB(v), cC(v) 

stable boundaries with asymptotic Schlieren patterns ds/dv

j 0 with w 0 “no net reaction at infinite time”
(Gilbert & Jenkins, Proc. Royal Soc. London A, 1959)

linear geometry and radial-independent force

The reaction fluxes ji follow mass conservation with jA = jB = −jC = j, and it 
is assumed that all species are in instantaneous equilibrium following mass 
action law  

A B Cc c K c=



summarized by Fujita (1975)

sA sB sC sA sB sC

quantitative application in AUC has been largely dormant:
difficulty in measuring asymptotic boundary; computational limitation at the time



c(s) approximately deconvolutes diffusion from reaction boundaries D ≈ 0

Gilbert-Jenkins theory predicts diffusion-free asymptotic boundaries at D = 0

should be equivalent !

J. Dam, P. Schuck (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Sedimentation coefficient distributions c(s) and 
asymptotic boundary profiles from Gilbert-Jenkins theory. Biophysical Journal 89:651-666
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pretty consistent, enough to convince conceptually OK
but not 100% identical (maximum entropy regularization, linear Lamm equation model)

how to utilize that quantitatively?

INTEGRATE weight-average s-value of of boundary components, and amplitudes 
compare with theoretical values from GJT, also integrated

corresponds to a BOUNDARY SHAPE analysis without requirements of Lamm equation modeling

• in global model with weight-average
• in global model with different signals/wavelengths

J. Dam, P. Schuck (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Sedimentation coefficient distributions c(s) and 
asymptotic boundary profiles from Gilbert-Jenkins theory. Biophysical Journal 89:651-666



sw,fast

aslow afast

sw

slow

multi-signal analysis

concentration series

what do we do with c(s) curves?



THEORY - what to expect?   - sw is well-known

sw approaches sAB only for precise stoichiometry, otherwise far away



THEORY - this is sfast from GJT

sfast approaches sAB in any case with cA or cB >> KD



0.1 1 10 100
7

8

9

10

11

12

13

s w
(S

)

c/KD

equimolar

7

8

9

10

11

12

13

fix a = KD

7

8

9

10

11

12

13

fix b = KD

c/KD
0.1 1 10 100

c/KD
0.1 1 10 100

s w
(S

)
s w

(S
)

s f
as

t
(S

)
s f

as
t
(S

)
s f

as
t
(S

)

0.01

0.1

1

10

po
pu

la
tio

n 
fa

st
/s

lo
w

 (f
rin

ge
s)

0.01

0.1

1

10

po
pu

la
tio

n 
fa

st
/s

lo
w

 (f
rin

ge
s)

c/KD
0.1 1 10 100

0.01

0.1

1

10

po
pu

la
tio

n 
fa

st
/s

lo
w

 (f
rin

ge
s)

c/KD
0.1 1 10 100

c/KD
0.1 1 10 100



So far, examples have shown clearly separate boundaries. 

how does it work for a small species with high D? 

… real test for deconvolution of diffusion in c(s)



small species
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A (25 kDa, 2.5 S) + B (40kDa, 3.5 S) ⇔ AB (5 S), koff = 0.01/sec
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Summary of c(s) analysis of reacting systems:

• c(s) approximately deconvolutes diffusion from reaction boundaries 

• c(s) distributions are approximations of the asymptotic boundary from Gilbert-

Jenkins theory

• Gilbert-Jenkins modeling of c(s) can be quantitatively used to model isotherms of 

reaction boundary, in addition to sw(c)

• higher confidence in KD and scomplex

• characteristic information on stoichiometry

• takes advantage of bimodal boundary structure, without need for detailed Lamm

eq. modeling (can of course be used, afterwards, too, using parameter estimates)

J. Dam, P. Schuck (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Sedimentation coefficient distributions c(s) and 
asymptotic boundary profiles from Gilbert-Jenkins theory. Biophysical Journal 89:651-666



• no detailed boundary shape info used

• can deal with impurities outside range of interacting system

• useful to build model (stoichiometry, KD , scomplex)

• concentration series global modeling of isotherms

second-moment method: mass balance

a) integrate all c(s) peaks at once 
b) model weight-average (signal-average) sw(c) with isotherm model

for slow reactions: baseline-separated peaks reveal species populations
a) integrate c(s) peaks individually 
b) species population isotherm

Summary of c(s) based analysis methods for reacting systems

for fast reactions: bi-modal boundary according to Gilbert-Jenkins theory

a) integrate fast and slow c(s) peaks
b) model signal-average s(c) of fast boundary with isotherm model
c) model amplitudes of fast and slow boundary with isotherm model

for heterogeneous interactions: global multi-signal analysis for multi-component c(s)
a) for determining stoichiometry of extended associations
b) requires either koff < 10-4/sec or c > 3fold KD



isotherm analysis

• only mass balance consideration, no boundary shape
• slow and fast
• sw(c) for self-association/hetero-association
• stoichiometry for hetero-association
• KD, limiting s-value 
• scomplex hydrodynamic shape?

( )
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s c c s
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equimolar concentrations titration configuration



isotherm analysis

• for koff < 10-4/sec
• exploit boundary shape to distinguish species
• for self-association/hetero-association
• KD

( , ), ( , ), ( , )free freetot tot tot tot tot tot
A B A B AB A BBA

free free freetot
A BA A

free free freetot
B B BA

c c c c c c c c c

c c Kc c

c c Kc c

= +

= +

population isotherm



isotherm analysis

• for koff > 10-3/sec
• exploit bimodal nature of boundary
• for hetero-association
• KD
• scomplex (hydrodynamic shape)

,( , ), ( , ), ( , )tot tot tot tot tot tot
undisturbed A B reaction A B w reaction A Bc c c c c c s c c

Gilbert-Jenkins theory-based isotherms

model based on 

a) ‘constant bath theory’ diffusion of reaction boundary approximately like non-interacting species

b) c(s) can approximately deconvolute diffusion from reaction boundary

c) prediction from Gilbert-Jenkins theory on asymptotic boundary (D = 0)

d) c(s) ≈ asymptotic boundary 


