Sedimentation Velocity Analysis of Interacting Systems using c(s)

Peter Schuck

simulated sedimentation of rapidly self-association systems

\rightarrow large amount of data

 \rightarrow for fast reactions: provides information on complete isotherm of s_w(c) for range of c < c_{load}

Boundary shapes for a heterogeneous reaction with different binding kinetics → effect of protein size

 $A+B \leftarrow \rightarrow AB$, concentration equimolar at $3K_D$ with koff = 1e-2, 1e-3, 1e-4, 1e-5

A = 30 kDa, B = 50 kDa

bimodal boundary for 2component mixture

smaller size diminishes characteristic features from reaction kinetics

Boundary shapes for a heterogeneous reaction with different binding kinetics \rightarrow c(s) curves from slow to fast reactions

c(s) curves can be used to diagnose kinetic regime

J. Dam, C.A. Velikovsky, R.A. Mariuzza, C. Urbanke, P. Schuck (2005) Sedimenetation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s). <u>Biophysical Journal 89:619-634</u>

Boundary shapes for a heterogeneous reaction with different binding kinetics → limitations

→diffusion does reduce information on kinetics, reaction scheme, therefore small proteins will
 be more difficult

→ interpretation of boundary broadening is exquisitely sensitive to everything that made already the determination of molar mass difficult: (micro)-heterogeneity, multiple conformations, glycosylation

 \rightarrow sensitivity only over a narrow range of time-constants, given by the sedimentation time: **best** for ~ 10⁻⁴ - 10⁻³ /sec

→ describing kinetic models possible, but depend on parameters that are frequently ill-defined
 by the experiment

 \rightarrow need less detailed models, which permit to quantitatively analyze interactions in SV based on the strength of SV: <u>separation in mixtures</u>

c(s) curves from analysis of self-association and hetero-association

- \Rightarrow c(s) analysis of reaction boundary may result in broad distribution
- \Rightarrow rms error can go up
- \Rightarrow apparent f/f₀ may be smaller than real f/f₀ (sometimes < 1)
- \Rightarrow for slow systems, c(s) gives peak positions of species
- \Rightarrow for fast systems, c(s) gives undisturbed boundary and approximations of asymptotic reaction boundary

Boundary shapes for a heterogeneous reaction with different binding kinetics \rightarrow c(s) curves from slow to fast reactions

c(s) curves can be used to diagnose kinetic regime

c(s) shows either populations of species, or something in between

 \rightarrow how does this work?

 \rightarrow peak s-values do not coincide well with species s-values – why?

 \rightarrow what do these curves mean, and how can they be used quantitatively?

'Constant Bath' Approximation:

Krauss, Pingoud, Boehme, Riesner, Peters, Maass. Eur. J. Biochem. (1975)

Example: $A + B \leftarrow \rightarrow AB$

$$\frac{\partial a}{\partial t} = D_a \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial a}{\partial r} \right) \right] - s_a \omega^2 \frac{1}{r} \frac{\partial}{\partial r} \left(r^2 a \right) + q_a$$
$$\frac{\partial b}{\partial t} = D_b \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial b}{\partial r} \right) \right] - s_b \omega^2 \frac{1}{r} \frac{\partial}{\partial r} \left(r^2 b \right) + q_b$$
$$\frac{\partial c}{\partial t} = D_c \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial c}{\partial r} \right) \right] - s_c \omega^2 \frac{1}{r} \frac{\partial}{\partial r} \left(r^2 c \right) + q_c$$

system of Lamm equations

what if A was small and would not exhibit a spatial gradient?

 $q_a = q_b = -q_c = k_{on}ab - k_{off}c$ $K_D = k_{on}/k_{off}$ ($K_D = ab/c$ for instant. reaction)

 $\partial a/\partial r = 0$ fast reaction $\rightarrow \partial c/\partial r = Ka \partial b/\partial r$

add Lamm eq. for b + c

$$\mathbf{c} \qquad \frac{\partial b}{\partial t} + \frac{\partial c}{\partial t} = \left(D_b + KaD_c\right) \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial b}{\partial r}\right)\right] - \left(s_b + Kas_c\right)\omega^2 \frac{1}{r}\frac{\partial}{\partial r}\left(r^2b\right) + q_b + q_b$$

introduce new variable for b+c $\beta = b + c$

$$\frac{\partial \beta}{\partial t} = D^* \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \beta}{\partial r} \right) \right] - s^* \omega^2 \frac{1}{r} \frac{\partial}{\partial r} \left(r^2 \beta \right)$$

→ non-interacting single-species Lamm equation

$$D^* = \frac{D_b + KaD_c}{1 + Ka}, \quad s^* = \frac{s_b + Kas_c}{1 + Ka}$$

J. Dam, C.A. Velikovsky, R.A. Mariuzza, C. Urbanke, P. Schuck (2005) Sedimenetation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s). <u>Biophysical Journal 89:619-634</u>

'Constant Bath' Approximation:

• cannot be strictly fulfilled, since A, B, and C are always in mass action law equilibrium
 → there will be a gradient of A.

 \rightarrow how large is this gradient?

 \rightarrow can this be a realistic and useful limiting case for protein-protein interactions?

→ excellent description – why?

- \rightarrow indeed the first boundary is of free A
- \rightarrow there is free A in the fast boundary
- \rightarrow there is some gradient of free A

→ however: free A changes from 76 to 97 % where free B goes from 10 to 90% → mass action law causes the fractional occupation of B (i.e. C/(B+C)) to vary only between 30 to 35% → this means that the gradient in A does not lead to a big change in the 'pseudo-species B+C' constituting the fast boundary in the the constant bath theory. Therefore, overall description good.

(the dispersion in s caused by the finite range of C/(B+C) does show up in a slight increase in D; how to treat the dispersion in terms of range of s-values will be topic of Gilbert-Jenkins theory later)

 \rightarrow the big result here is that, in a first approximation, diffusion of the reaction boundary is very similar to that of a single species.

 \rightarrow consistent s-values of the fast boundary with s* from 'constant bath' theory

Schematics of diffusion-free sedimentation of an rapidly reacting system

Gilbert & Jenkins, Nature, 1956

Boundary Problems in the Sedimentation and Electrophoresis of Complex Systems in Rapid Reversible Equilibrium

of experiments with actual systems can then be carried out by analogy. This approach proved useful recently' for interpreting the sedimentation of α -chymotrypsin³ and mercuripapaint under conditions where reversible polymerization occurs, and it is now extended to the more general case of two substances, A and B, reacting reversibly to form a third, C_i in accordance with the equation $A + B \in C$.

854

Consider a boundary between solution and solvers after transport by electrons solution and solvers boundary is sharp at t = 0, and measume that the boundary is sharp at t = 0, and measume that the direction of the solution. Let the respective velocities of A, B and C be v_{4} , v_{3} and v_{5} in the direction of t_{6} , and let the molar concentrations of A, B and C be q_{9} , b_{9} and c_{6} in the unchanged body of the solution, and a, b and c at z. Equilibrium will be assumed to be governed by the equation a, b = k, c_{7} where kis a constant.

The rate of change of concentration with time at any point in the boundary where A, B and C co-exist is the combined result of the migration and the reaction of each of the species. Since mass is conserved, it follows that:

$$\frac{\partial a}{\partial t} + v_A \frac{\partial a}{\partial x} = \frac{\partial b}{\partial t} + v_B \frac{\partial b}{\partial x} = -\frac{\partial c}{\partial t} - v_C \frac{\partial c}{\partial x}$$

It will be shown elsewhere that these partitifferential equations can be also had the partitifferential equations.

 $\begin{aligned} a &= \frac{k}{\lambda = -1} \cosh^{*} \frac{\varphi}{2} \left\{ 1 &= \frac{\Phi - \varphi}{\sinh \varphi} \right\} \\ b &= \frac{k}{\lambda + 1} \sinh^{*} \frac{\varphi}{2} \left\{ 1 &+ \frac{\Phi - \varphi}{\sinh \varphi} \right\} \\ c &= ab \end{aligned}$

$$\cosh \varphi = \frac{2(v_C - v_A) (v_C - v_B)}{(v_A - v_B) (v_C - x_l t)} -$$

and $\lambda = \frac{2v_C - (v_A + v_B)}{v_A - v_B}$

 Φ is a constant determined by a_{s}, b_{s} and c_{s} . The concentration gradients $\delta a/\delta x, \delta b/\delta x$ and $\delta c/\delta x$, which determine the schliveren patterns seen during optical analysis of the boundaries, are readily obtained by differentiation of the respective expressions for a, b and c.

The detailed application of those equations cannot be discussed here : but to give an indication of their use, the shape of the sedimentation boundary has been worked out for an example in which, for illustration, $a_{\rm eb}$, $b_{\rm e}$ and $c_{\rm e}$ and k have been given the respective values of 2–0, 1–0, 1–0 and 2–0 moles/litte \times 10°, and $v_{\rm c}$, $v_{\rm d}$ and $v_{\rm f}$ the respective values of 14, 19 and 8 for which are interval.

The boundary is found to keep its essential shape and merely to stretch out with time. It can therefore be represented by a 'reduced' form in which concentration, or alternatively the derivative of concentration, is plotted as ordinate against sedimentation coefficient as abscissa (see Fig. 1).

Dotted lines show the contribution each constituent would make to the boundary if no re-equilibration occurred. They demonstrate how completely the form of the boundary is changed by re-equilibration. Among the points to notice are: (1) the value of the concentration of *B* that would be deduced from

assuming no re-equilibration or diffusion the slow peak at S = 8.0 units is 0.26×10.4 M compared with the true equilibrium value of $1.0 \times$ 10^{-4} M; (2) although two-thirds of A is uncombined, there is no peak corresponding to the sedimentation constant of A = S.

constant of A at S = 10; (3) the broad peak stretching from S = 10.5 to S = 12.0 suggests the presence of two complexes; (4) there is no peak at S = 14in spite of the presence of complex having that sedimentation constant. In this example, therefore, an interpretation of

the sedimentation pattern which neglected the effect of re-equilibrium would lead to a wrong estimate of the nature of the complex present and of the concentrations of the uncombined constituents.

We are indebted to Prof. R. E. Peierls for his advice and interest. One of us (R. C. Ll. J.) acknowledges the award of a maintenance grant from the Department of Scientific and Industrial Research G. A. GILBERT R. C. LL. JENKINS

R. C. LL. JEN Department of Chemistry, and Department of Mathematical Physics,

The University, Edgbaston, Birmingham 15. Dec. 19.

¹ Tiselius, A., Nova Acta Soc. Sci. Upsal., IV, 7, No. 4, 1 (1930).
 ⁸ Longsworth, L. G., and MacInnes, D. A., J. Gen. Physiol., 25, 507 (1942).

 Field, E. O., and Ogston, A. G., Biochem, J., 60, 661 (1955).
 Gilbert, G. A., Disc. Paraday Soc., (20, 68 (1955)).
 ⁴ Massey, V., Harrington, W. F., and Hartley, B. S., Disc. Faraday Soc., (20, 24 (1955)).

 Soc. (20, 24 (1955)].
 *Smith, E. L., Kimmel, J. R., and Brown, D. M., J. Biol. Chem. 207, 533 (1954). linear geometry and radial-independent force

$$\frac{\partial c_i}{\partial t} = D_i \frac{\partial^2 c_i}{\partial x^2} - v_i \frac{\partial c_i}{\partial x} + j_i$$

The reaction fluxes j_i follow mass conservation with $j_A = j_B = -j_C = j$, and it is assumed that all species are in instantaneous equilibrium following mass action law

$$c_A c_B K = c_C$$

A change of variables from spatial and time coordinates *x* and *t* to the velocity v = x/t and the inverse time w = 1/t

$$(v - v_i)\frac{\partial c_i}{\partial v} + w\left(\frac{\partial c_i}{\partial w} + D_i\frac{\partial^2 c_i}{\partial v^2}\right) = -\frac{j}{w}$$

the limit of infinite time $(w \rightarrow 0)$

$$(v - v_a)\frac{\partial c_A}{\partial v} = (v - v_b)\frac{\partial c_B}{\partial v} = -(v - v_c)\frac{\partial c_C}{\partial v}$$

which can be solved for $c_A(v)$, $c_B(v)$, $c_C(v)$

 \rightarrow stable boundaries with asymptotic Schlieren patterns ds/dv

 $j \rightarrow 0$ with $w \rightarrow 0 \rightarrow$ "<u>no net reaction at infinite time</u>" (Gilbert & Jenkins, Proc. Royal Soc. London A, 1959)

274 SEDIMENTATION TRANSPORT IN CHEMICALLY REACTING SYSTEMS

with ϕ' given as the root of equation 4.115. Thus, in this case, the region between the lower edge and x'(t) of the sedimentation boundary is a uniform solution of B only.

If $\Phi < 0$, the lower edge of the boundary is located at the "unperturbed" boundary position of species A, that is, $x = u_A t$, and the concentration distributions between this position and x'(t) are given by

$$C_{\rm A} = \frac{2k}{\lambda - 1} \cosh^2 \frac{\phi'}{2}$$

$$C_{\rm B} = 0, \qquad C_{\rm C} = 0$$
(4.12)

where ϕ' is the root of equation 4.116. Hence, in this case, the region considered is filled with a uniform solution of A only.

2. Illustrations of the Gilbert-Jenkins Asymptotic Solutions

Inspection of the expression presented above reveals that if the variable ξ defined by equation 4.105 is used as the abscissa, the concentration distribution of each solute species represented by the Gilbert-Jenkins asymptotic solutions is transformed to a "reduced" curve which is independent of time and is governed by three parameters: λ , C_A^0/k , and C_B^0/k . The remaining parameters u_A , u_B , and u_C are absorbed into ξ and λ .

In the upper sections of Figs. 4.10*a* and 4.10*b* are shown the "reduced" concentration distributions of A, B, and AB (=C) for two systems in which λ is the same (=5) but the set of values of C_A^{0}/k and C_B^{0}/k is different. For these values of the basic parameters, the constant Φ is negative for the system (*a*) and positive for the system (*b*). The lower sections of Figs. 4.10*a* and 4.10*b* show the corresponding distributions of total refractive index gradients, calculated on the assumption that the three species have the same specific refractive index increment. The dashed lines in these graphs indicate the "unperturbed" boundary positions (expressed in terms of x/t) for the three species.

Of the many interesting features displayed by these theoretical curves the following points are worthy of special mention.

1. It is observed how greatly the position and shape of the gradient curve are affected by the occurrence of a chemical reaction in the system.

2. The gradient curve is separated into two distinct regions, one being infinitely sharp and the other being broad and spreading over a range.

COMPLEX FORMATION

3. The <u>spreading boundary</u> is single-peaked or double-peaked, depending on the initial concentrations of A and B and on the equilibrium constant K (or k). In either case, the position of each peak does not correspond to the mobility of any solute species present in the solution. The appearance of two peaks does not mean the existence of two solutes in the spreading boundary. In fact, three solute species coexist in this region.

4. The infinitely sharp boundary moves at a slower rate than the spreading boundary, but this rate does not necessarily equal the mobility of the slowest species B. It may be equal to the rate intrinsic to species A, depending on the initial concentrations of A and B and on the equilibrium constant.

These characteristics of the theoretical gradient curves add another example to the warning that it is extremely hazardous to draw conclusions from sedimentation velocity experiments by formal application of the traditional procedures when a chemical interaction between solutes may be suspected.

quantitative application in AUC has been largely dormant: difficulty in measuring asymptotic boundary; computational limitation at the time

275

 \rightarrow c(s) approximately deconvolutes diffusion from reaction boundaries \rightarrow D \approx 0

 \rightarrow Gilbert-Jenkins theory predicts diffusion-free asymptotic boundaries at D = 0

→ should be equivalent !

J. Dam, P. Schuck (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Sedimentation coefficient distributions c(s) and asymptotic boundary profiles from Gilbert-Jenkins theory. <u>Biophysical Journal 89:651-666</u>

6.5

- \rightarrow pretty consistent, enough to convince conceptually OK
- \rightarrow but not 100% identical (maximum entropy regularization, linear Lamm equation model)

how to utilize that quantitatively?

→ INTEGRATE weight-average s-value of of boundary components, and amplitudes

→ compare with theoretical values from GJT, also integrated

corresponds to a BOUNDARY SHAPE analysis without requirements of Lamm equation modeling

- in global model with weight-average
- in global model with different signals/wavelengths

THEORY - what to expect? - sw is well-known

\boldsymbol{s}_{w} approaches \boldsymbol{s}_{AB} only for precise stoichiometry, otherwise far away

THEORY - this is \mathbf{s}_{fast} from GJT

 s_{fast} approaches s_{AB} in any case with c_A or $c_B >> K_D$

So far, examples have shown clearly separate boundaries.

→ how does it work for a small species with high D?
 ... real test for deconvolution of diffusion in c(s)

s-value (S)

s-value (S)

Summary of c(s) analysis of reacting systems:

- c(s) approximately deconvolutes diffusion from reaction boundaries
- c(s) distributions are approximations of the asymptotic boundary from Gilbert-

Jenkins theory

- Gilbert-Jenkins modeling of c(s) can be quantitatively used to model isotherms of reaction boundary, in addition to $s_w(c)$
- higher confidence in K_D and s_{complex}
- characteristic information on stoichiometry
- takes advantage of bimodal boundary structure, without need for detailed Lamm

eq. modeling (can of course be used, afterwards, too, using parameter estimates)

J. Dam, P. Schuck (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Sedimentation coefficient distributions c(s) and asymptotic boundary profiles from Gilbert-Jenkins theory. <u>Biophysical Journal 89:651-666</u>

Summary of c(s) based analysis methods for reacting systems

second-moment method: mass balance

- a) integrate all c(s) peaks at once
- b) model weight-average (signal-average) $s_w(c)$ with isotherm model

for fast reactions: bi-modal boundary according to Gilbert-Jenkins theory

- a) integrate fast and slow c(s) peaks
- b) model signal-average s(c) of fast boundary with isotherm model
- c) model amplitudes of fast and slow boundary with isotherm model

for slow reactions: baseline-separated peaks reveal species populations

- a) integrate c(s) peaks individually
- b) species population isotherm

for heterogeneous interactions: global multi-signal analysis for multi-component c(s)

- a) for determining stoichiometry of extended associations
- b) requires either $k_{off} < 10^{-4}$ /sec or c > 3fold K_D
- no detailed boundary shape info used
- can deal with impurities outside range of interacting system
- useful to build model (stoichiometry, K_D , $s_{complex}$)
- concentration series \rightarrow global modeling of isotherms

isotherm analysis

weight-average s-value

$$s_{w}(c^{tot}) = \frac{1}{c_{tot}} \mathop{a}\limits_{i}^{*} c_{i}s_{i}$$

$$s_{w}^{l}(c_{A}^{tot}, c_{B}^{tot}) = \frac{e_{A}c_{A}^{free}s_{A} + e_{B}c_{B}^{free}s_{B} + (e_{A} + e_{B})Kc_{A}^{free}c_{B}^{free}s_{AB}}{e_{A}c_{A}^{tot} + e_{B}c_{B}^{tot}}$$

$$c_{A}^{tot} = c_{A}^{free} + Kc_{A}^{free}c_{B}^{free}$$

$$c_{B}^{tot} = c_{B}^{free} + Kc_{A}^{free}c_{B}^{free}$$

- only mass balance consideration, no boundary shape
- slow and fast
- s_w(c) for self-association/hetero-association
- stoichiometry for hetero-association
- K_D, limiting s-value
- s_{complex} hydrodynamic shape?

population isotherm

$$c_{A}^{free}(c_{A}^{tot}, c_{B}^{tot}), \quad c_{B}^{free}(c_{A}^{tot}, c_{B}^{tot}), \quad c_{AB}(c_{A}^{tot}, c_{B}^{tot})$$

$$c_{A}^{tot} = c_{A}^{free} + Kc_{A}^{free}c_{B}^{free}$$

$$c_{B}^{tot} = c_{B}^{free} + Kc_{A}^{free}c_{B}^{free}$$

- for $k_{off} < 10^{-4}/sec$
- exploit boundary shape to distinguish species
- for self-association/hetero-association
- K_D

isotherm analysis

Gilbert-Jenkins theory-based isotherms

$$c_{undisturbed}(c_A^{tot}, c_B^{tot}), c_{reaction}(c_A^{tot}, c_B^{tot}), s_{w, reaction}(c_A^{tot}, c_B^{tot})$$

model based on

- a) 'constant bath theory' \rightarrow diffusion of reaction boundary approximately like non-interacting species
- b) c(s) can approximately deconvolute diffusion from reaction boundary
- c) prediction from Gilbert-Jenkins theory on asymptotic boundary (D = 0)
- d) $c(s) \approx asymptotic boundary$

- for $k_{off} > 10^{-3}/sec$
- exploit bimodal nature of boundary
- for hetero-association
- K_D
- s_{complex} (hydrodynamic shape)

