Sedimentation Velocity Analysis of Interacting Systems using c(s)

Peter Schuck

simulated sedimentation of rapidly self-association systems

\rightarrow large amount of data

\rightarrow for fast reactions: provides information on complete isotherm of $\mathrm{s}_{\mathrm{w}}(\mathrm{c})$ for range of $\mathrm{c}<\mathrm{c}_{\text {load }}$

Boundary shapes for a heterogeneous reaction with different binding kinetics \Rightarrow effect of protein size
$A+B \leftrightarrow \rightarrow A B$, concentration equimolar at $3 K_{D}$
with koff $=1 e-2,1 e-3,1 e-4,1 e-5$
$A=30 \mathrm{kDa}, B=50 \mathrm{kDa}$
$A=90 \mathrm{kDa}, \mathrm{B}=150 \mathrm{kDa}$
bimodal boundary for 2component mixture

Boundary shapes for a heterogeneous reaction with different binding kinetics $\Rightarrow \mathrm{c}(\mathrm{s})$ curves from slow to fast reactions

c(s) curves can be used to diagnose kinetic regime

Boundary shapes for a heterogeneous reaction with different binding kinetics

 \Rightarrow Iimitations\rightarrow diffusion does reduce information on kinetics, reaction scheme, therefore small proteins will

be more difficult

\rightarrow interpretation of boundary broadening is exquisitely sensitive to everything that made already the determination of molar mass difficult: (micro)-heterogeneity, multiple conformations, glycosylation
\rightarrow sensitivity only over a narrow range of time-constants, given by the sedimentation time: best for $\sim 10^{-4}-10^{-3}$ /sec
\rightarrow describing kinetic models possible, but depend on parameters that are frequently ill-defined by the experiment
\rightarrow need less detailed models, which permit to quantitatively analyze interactions in SV based on the strength of SV: separation in mixtures
c(s) curves from analysis of self-association and hetero-association

self-association

hetero-association

$\Rightarrow \mathrm{c}(\mathrm{s})$ analysis of reaction boundary may result in broad distribution
\Rightarrow rms error can go up
\Rightarrow apparent $\mathrm{f} / \mathrm{f}_{0}$ may be smaller than real $\mathrm{f} / \mathrm{f}_{0}$ (sometimes <1)
\Rightarrow for slow systems, c(s) gives peak positions of species
\Rightarrow for fast systems, $\mathrm{c}(\mathrm{s})$ gives undisturbed boundary and approximations of asymptotic reaction boundary

Boundary shapes for a heterogeneous reaction with different binding kinetics $\Rightarrow \mathrm{c}(\mathrm{s})$ curves from slow to fast reactions

c(s) curves can be used to diagnose kinetic regime
c(s) shows either populations of species, or something in between
\rightarrow how does this work?
\rightarrow peak s-values do not coincide well with species s-values - why?
\rightarrow what do these curves mean, and how can they be used quantitatively?

'Constant Bath' Approximation:

Krauss, Pingoud, Boehme, Riesner, Peters, Maass. Eur. J. Biochem. (1975)
Example: $\mathrm{A}+\mathrm{B} \longleftrightarrow \mathrm{AB}$

$$
\begin{aligned}
& \frac{\partial a}{\partial t}=D_{a}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial a}{\partial r}\right)\right]-s_{a} \omega^{2} \frac{1}{r} \frac{\partial}{\partial r}\left(r^{2} a\right)+q_{a} \\
& \frac{\partial b}{\partial t}=D_{b}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial b}{\partial r}\right)\right]-s_{b} \omega^{2} \frac{1}{r} \frac{\partial}{\partial r}\left(r^{2} b\right)+q_{b} \\
& \frac{\partial c}{\partial t}=D_{c}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial c}{\partial r}\right)\right]-s_{c} \omega^{2} \frac{1}{r} \frac{\partial}{\partial r}\left(r^{2} c\right)+q_{c}
\end{aligned}
$$

system of Lamm equations
what if A was small and would not exhibit a spatial gradient?

$$
\partial a / \partial r=0 \quad \text { fast reaction } \rightarrow \quad \partial c / \partial r=K a \partial b / \partial r
$$

add Lamm eq. for $\mathrm{b}+\mathrm{c} \quad \frac{\partial b}{\partial t}+\frac{\partial c}{\partial t}=\left(D_{b}+K a D_{c}\right)\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial b}{\partial r}\right)\right]-\left(s_{b}+K a s_{c}\right) \omega^{2} \frac{1}{r} \frac{\partial}{\partial r}\left(r^{2} b\right)+q_{b}+q_{c}$
introduce new variable for $\mathrm{b}+\mathrm{c}$

$$
\beta=b+c \quad \frac{\partial \beta}{\partial t}=D^{*}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \beta}{\partial r}\right)\right]-s^{*} \omega^{2} \frac{1}{r} \frac{\partial}{\partial r}\left(r^{2} \beta\right)
$$

\Rightarrow non-interacting single-species Lamm equation

$$
D^{*}=\frac{D_{b}+K a D_{c}}{1+K a}, \quad s^{*}=\frac{s_{b}+K a s_{c}}{1+K a}
$$

‘Constant Bath' Approximation:

- cannot be strictly fulfilled, since A, B, and C are always in mass action law equilibrium \rightarrow there will be a gradient of A .
\rightarrow how large is this gradient?
\rightarrow can this be a realistic and useful limiting case for protein-protein interactions?
address this questions using
Lamm equation solutions for instantaneous reaction of proteins $\mathrm{A}=100 \mathrm{kDa}, \mathrm{B}=200 \mathrm{kDa}$
$\mathrm{s}_{\mathrm{A}}=7 \mathrm{~S}, \mathrm{~s}_{\mathrm{B}}=10 \mathrm{~S}, \mathrm{~s}_{\mathrm{AB}}=13 \mathrm{~S}$
equimolar concentration at $\mathrm{Kd}=10 \mathrm{uM}$
two boundaries:
- free A at 7 S
- reaction boundary
fit with 2 species model:
$\mathrm{s}_{1}=7.02 \mathrm{~S} \quad($ expect 7.0 S$)$
$\mathrm{s}_{2}=11.15 \mathrm{~S} \quad\left(\mathrm{~s}^{*}=11.14 \mathrm{~S}\right)$
$\mathrm{M}_{\mathrm{A}}=83.4 \mathrm{kDa}(-17 \%)$
$\mathrm{M}_{\mathrm{B}}=198 \mathrm{kDa}(-25 \%)$
rmsd $=0.0043$

\Rightarrow diffusion coefficients quantitatively not very precise, but s-values very good
\Rightarrow excellent description - why?

\rightarrow indeed the first boundary is of free A
\rightarrow there is free A in the fast boundary
\rightarrow there is some gradient of free A
\rightarrow however: free A changes from 76 to 97% where free B goes from 10 to $90 \% \rightarrow$ mass action law causes the fractional occupation of B (i.e. C/(B+C)) to vary only between 30 to $35 \% \rightarrow$ this means that the gradient in A does not lead to a big change in the 'pseudo-species $\mathrm{B}+\mathrm{C}$ ' constituting the fast boundary in the the constant bath theory. Therefore, overall description good.
(the dispersion in s caused by the finite range of $\mathrm{C} /(\mathrm{B}+\mathrm{C})$ does show up in a slight increase in D ; how to treat the dispersion in terms of range of s-values will be topic of Gilbert-Jenkins theory later)
\rightarrow the big result here is that, in a first approximation, diffusion of the reaction boundary is very similar to that of a single species.
\rightarrow consistent s-values of the fast boundary with s* from 'constant bath' theory

Gilbert \& Jenkins, Nature, 1956

linear geometry and radial-independent force

$$
\frac{\partial c_{i}}{\partial t}=D_{i} \frac{\partial^{2} c_{i}}{\partial x^{2}}-v_{i} \frac{\partial c_{i}}{\partial x}+j_{i}
$$

The reaction fluxes j_{i} follow mass conservation with $j_{A}=j_{B}=-j_{C}=j$, and it is assumed that all species are in instantaneous equilibrium following mass action law

$$
c_{A} c_{B} K=c_{C}
$$

A change of variables from spatial and time coordinates x and t to the velocity $v=x / t$ and the inverse time $w=1 / t$

$$
\left(v-v_{i}\right) \frac{\partial c_{i}}{\partial v}+w\left(\frac{\partial c_{i}}{\partial w}+D_{i} \frac{\partial^{2} c_{i}}{\partial v^{2}}\right)=-\frac{j}{w}
$$

the limit of infinite time $(w \rightarrow 0)$

$$
\left(v-v_{a}\right) \frac{\partial c_{A}}{\partial v}=\left(v-v_{b}\right) \frac{\partial c_{B}}{\partial v}=-\left(v-v_{c}\right) \frac{\partial c_{C}}{\partial v}
$$

which can be solved for $c_{A}(v), c_{B}(v), c_{C}(v)$
\rightarrow stable boundaries with asymptotic Schlieren patterns $d s / d v$
$\mathrm{j} \rightarrow 0$ with $\mathrm{w} \rightarrow 0 \rightarrow$ "no net reaction at infinite time"
(Gilbert \& Jenkins, Proc. Royal Soc. London A, 1959)

summarized by Fujita (1975)

with ϕ^{\prime} given as the root of equation 4.115. Thus, in this case, the region between the lower edge and $x^{\prime}(t)$ of the sedimentation boundary is a uniform solution of B only.

If $\Phi<0$, the lower edge of the boundary is located at the "unperturbed" boundary position of species A, that is, $x=u_{\mathrm{A}} t$, and the concentration distributions between this position and $x^{\prime}(t)$ are given by

$$
\begin{align*}
& C_{\mathrm{A}}=\frac{2 k}{\lambda-1} \cosh ^{2} \frac{\phi^{\prime}}{2} \\
& C_{\mathrm{B}}=0, \quad C_{\mathrm{C}}=0
\end{align*}
$$

where ϕ^{\prime} is the root of equation 4.116 . Hence, in this case, the region considered is filled with a uniform solution of A only.

2. Illustrations of the Gilbert-Jenkins Asymptotic Solutions

Inspection of the expression presented above reveals that if the variable ξ defined by equation 4.105 is used as the abscissa, the concentration distribution of each solute species represented by the Gilbert-Jenkins asymptotic solutions is transformed to a "reduced" curve which is independent of time and is governed by three parameters: $\lambda, C_{\mathrm{A}}{ }^{0} / k$, and $C_{\mathrm{B}}{ }^{0} / k$. The remaining parameters $u_{\mathrm{A}}, u_{\mathrm{B}}$, and u_{C} are absorbed into ξ and λ.

In the upper sections of Figs. $4.10 a$ and $4.10 b$ are shown the "reduced" concentration distributions of A, B, and $\mathrm{AB}(=\mathrm{C})$ for two systems in which λ is the same (=5) but the set of values of $C_{\mathrm{A}} 0 / k$ and $C_{\mathrm{B}}{ }^{0} / k$ is different. For these values of the basic parameters, the constant Φ is negative for the system (a) and positive for the system (b). The lower sections of Figs. $4.10 a$ and $4.10 b$ show the corresponding distributions of total refractive index gradients, calculated on the assumption that the three species have the same specific refractive index increment. The dashed lines in these graphs indicate the "unperturbed" boundary positions (expressed in terms of x / t) for the three species.
Of the many interesting features displayed by these theoretical curves the following points are worthy of special mention.

1. It is observed how greatly the position and shape of the gradient curve are affected by the occurrence of a chemical reaction in the system.
2. The gradient curve is separated into two distinct regions, one being infinitely sharp and the other being broad and spreading over a range.

COMPLEX FORMATION
275

3. The spreading boundary is single-peaked or double-peaked, depending on the initial concentrations of A and B and on the equilibrium constant K (or k). In either case, the position of each peak does not correspond to the mobility of any solute species present in the solution. The appearance of two peaks does not mean the existence of two solutes in the spreading boundary. In fact, three solute species coexist in this region.
4. The infinitely sharp boundary moves at a slower rate than the spreading boundary, but this rate does not necessarily equal the mobility of the slowest species B. It may be equal to the rate intrinsic to species A. depending on the initial concentrations of A and B and on the equilibrium constant.
These characteristics of the theoretical gradient curves add another example to the warning that it is extremely hazardous to draw conclusions from sedimentation velocity experiments by formal application of the traditional procedures when a chemical interaction between solutes may be suspected.
$\rightarrow \mathrm{c}(\mathrm{s})$ approximately deconvolutes diffusion from reaction boundaries $\rightarrow \mathrm{D} \approx 0$
\rightarrow Gilbert-Jenkins theory predicts diffusion-free asymptotic boundaries at $\mathrm{D}=0$
\Rightarrow should be equivalent !
equimolar mixture

equimolar mixture

equimolar mixture

equimolar mixture

equimolar mixture

absorbance [OD] $\bar{\varrho}$ u
larger species constant at K_{D}

larger species constant at K_{D}

larger species constant at K_{D}

larger species constant at K_{D}

larger species constant at K_{D}

smaller species constant at K_{D}

- absorbance [OD] ठ
\rightarrow pretty consistent, enough to convince conceptually OK
\rightarrow but not 100\% identical (maximum entropy regularization, linear Lamm equation model)
how to utilize that quantitatively?
\rightarrow INTEGRATE weight-average s-value of of boundary components, and amplitudes
\rightarrow compare with theoretical values from GJT, also integrated
corresponds to a BOUNDARY SHAPE analysis without requirements of Lamm equation modeling
- in global model with weight-average
- in global model with different signals/wavelengths

(2) partial conc. ISOTHERM data for ISOTHERM

Cisedfitworkshop\{data\{Ly 49 \{popisotherms\}... (m4pop.isotherm ...)

For Associating Systems:	extinction coefficient A \square invisible free A	1.0000
	extinction coefficient B	0.0000
1.200000		

INTEGRATE DISTRIBUTION

X

concentration series

Integral from 3.028571 to 5.142857 :
Loading Concentration [Signal] $=1.928367$ (89.172% of total)
Weight (Signal) Average $=4.376318$
Std. deviation[as sqit(second central moment)] $=0.300$ (best done without regularization)

THEORY - what to expect? - sw is well-known

S_{w} approaches S_{AB} only for precise stoichiometry, otherwise far away

THEORY - this is $\mathrm{s}_{\text {fast }}$ from GJT

$\mathrm{s}_{\text {fast }}$ approaches S_{AB} in any case with c_{A} or $\mathrm{C}_{\mathrm{B}} \gg \mathrm{K}_{\mathrm{D}}$

So far, examples have shown clearly separate boundaries.
\rightarrow how does it work for a small species with high D?
... real test for deconvolution of diffusion in $\mathrm{c}(\mathrm{s})$
$A(25 \mathrm{kDa}, 2.5 \mathrm{~S})+\mathrm{B}(40 \mathrm{kDa}, 3.5 \mathrm{~S}) \Leftrightarrow \mathrm{AB}(5 \mathrm{~S}), \mathrm{k}_{\text {off }}=0.01 / \mathrm{sec}$

slow

fast
$k_{\text {off }}=0.01 / \mathrm{sec}$

$$
\mathrm{c}=1,3,10,30 \mu \mathrm{M}
$$

Summary of c(s) analysis of reacting systems:

- $\quad \mathrm{c}(\mathrm{s})$ approximately deconvolutes diffusion from reaction boundaries
- c(s) distributions are approximations of the asymptotic boundary from GilbertJenkins theory
- Gilbert-Jenkins modeling of $\mathrm{c}(\mathrm{s})$ can be quantitatively used to model isotherms of reaction boundary, in addition to $\mathrm{s}_{\mathrm{w}}(\mathrm{c})$
- higher confidence in K_{D} and $\mathrm{s}_{\text {complex }}$
- characteristic information on stoichiometry
- takes advantage of bimodal boundary structure, without need for detailed Lamm eq. modeling (can of course be used, afterwards, too, using parameter estimates)

Summary of c(s) based analysis methods for reacting systems

second-moment method: mass balance

a) integrate all c(s) peaks at once
b) model weight-average (signal-average) $\mathrm{s}_{\mathrm{w}}(\mathrm{c})$ with isotherm model
for fast reactions: bi-modal boundary according to Gilbert-Jenkins theory
a) integrate fast and slow c(s) peaks
b) model signal-average $\mathrm{s}(\mathrm{c})$ of fast boundary with isotherm model
c) model amplitudes of fast and slow boundary with isotherm model
for slow reactions: baseline-separated peaks reveal species populations
a) integrate c(s) peaks individually
b) species population isotherm
for heterogeneous interactions: global multi-signal analysis for multi-component c(s)
a) for determining stoichiometry of extended associations
b) requires either $\mathrm{k}_{\text {off }}<10^{-4} / \mathrm{sec}$ or $\mathrm{c}>3$ fold K_{D}

- no detailed boundary shape info used
- can deal with impurities outside range of interacting system
- useful to build model (stoichiometry, $\mathrm{K}_{\mathrm{D}}, \mathrm{S}_{\text {complex }}$)
- concentration series \rightarrow global modeling of isotherms
isotherm analysis
weight-average s-value

$$
\begin{aligned}
& s_{w}\left(c^{\text {tot }}\right)=\frac{1}{c_{\text {tot }}} \stackrel{\circ}{\mathbf{a}} c_{i} s_{i} \\
& s_{w}^{l}\left(c_{A}^{\text {tot }}, c_{B}^{\text {tot }}\right)=\frac{e_{A} c_{A}^{\text {free }} s_{A}+e_{B} c_{B}^{\text {free }} s_{B}+\left(e_{A}+e_{B}\right) K c_{A}^{\text {free }} c_{B}^{\text {free }} s_{A B}}{e_{A} c_{A}^{\text {tot }}+e_{B} c_{B}^{\text {tot }}} \\
& c_{A}^{\text {tot }}=c_{A}^{\text {free }}+K c_{A}^{\text {free }} c_{B}^{\text {free }} \\
& c_{B}^{\text {tot }}=c_{B}^{\text {free }}+K c_{A}^{\text {free }} c_{B}^{\text {free }}
\end{aligned}
$$

equimolar concentrations titration configuration

- only mass balance consideration, no boundary shape
- slow and fast
- $\mathrm{s}_{\mathrm{w}}(\mathrm{c})$ for self-association/hetero-association
- stoichiometry for hetero-association
- K_{D}, limiting s-value
- $\mathrm{S}_{\text {complex }}$ hydrodynamic shape?
isotherm analysis
population isotherm

$$
\begin{aligned}
& c_{A}^{\text {free }}\left(c_{A}^{\text {tot }}, c_{B}^{\text {tot }}\right), \quad c_{B}^{\text {free }}\left(c_{A}^{\text {tot }}, c_{B}^{\text {tot }}\right), \quad c_{A B}\left(c_{A}^{\text {tot }}, c_{B}^{\text {tot }}\right) \\
& c_{A}^{\text {tot }}=c_{A}^{\text {free }}+K c_{A}^{\text {free }} c_{B}^{\text {free }} \\
& c_{B}^{\text {tot }}=c_{B}^{\text {free }}+K c_{A}^{\text {free }} c_{B}^{\text {free }}
\end{aligned}
$$

- for $\mathrm{k}_{\text {off }}<10^{-4} / \mathrm{sec}$
- exploit boundary shape to distinguish species
- for self-association/hetero-association
- K_{D}

Gilbert-Jenkins theory-based isotherms

$$
c_{\text {undisturbed }}\left(c_{A}^{\text {tot }}, c_{B}^{\text {tot }}\right), \quad c_{\text {reaction }}\left(c_{A}^{\text {tot }}, c_{B}^{\text {tot }}\right), \quad s_{w, \text { reaction }}\left(c_{A}^{\text {tot }}, c_{B}^{\text {tot }}\right)
$$

model based on
a) 'constant bath theory' \rightarrow diffusion of reaction boundary approximately like non-interacting species
b) c(s) can approximately deconvolute diffusion from reaction boundary
c) prediction from Gilbert-Jenkins theory on asymptotic boundary ($\mathrm{D}=0$)
d) $\mathrm{c}(\mathrm{s}) \approx$ asymptotic boundary

- for $\mathrm{k}_{\text {off }}>10^{-3} / \mathrm{sec}$
- exploit bimodal nature of boundary
- for hetero-association
- K

- $\mathrm{S}_{\text {complex }}$ (hydrodynamic shape)

