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Summary 
 
By modeling the evolution of concentration profiles measured in a sedimentation velocity experiment 
with a distribution of Lamm equation solutions it is possible to calculate diffusion-free sedimentation 
coefficient distributions, c(s).  For non- interacting or slowly interacting mixtures of sedimenting 
macromolecules, these report on the number and s-value of the species present in solution.  For rapidly 
interacting mixtures, the sedimentation boundaries and peaks in c(s) can be viewed as approximations 
of the asymptotic reaction boundary from Gilbert-Jenkins theory, which describe characteristic features 
of the sedimenting system, and provide a rigorous approach to the weight-average sedimentation 
coefficient.  The extension to sedimentation coefficient distributions of the individual components in a 
mixture, ck(s), calculated by global modeling of multiple signals from the sedimentation process, can 
reveal the stoichiometry of protein complexes.  This chapter describes the theory, some aspects related 
to the experimental setup, and illustrates the practical use of c(s) and ck(s) in several examples.  
 
Introduction 
The analysis of the macromolecular redistribution following the application of a high gravitational 
field provides very rich information on macromolecules and macromolecular mixtures 1,2.  In the past, 
sedimentation velocity (SV) analytical ultracentrifugation has played an important role in several 
fields, including physical chemistry, polymer chemistry, biochemistry, and molecular biology, and it is 
continuing to provide unique information for the study of both synthetic and biological 
macromolecules in solution.  It can permit the determination of homogeneity, molar mass, and gross 
shape of macromolecules, the thermodynamic and kinetic characterization of protein-protein 
interactions, as well as the detection of ligand-induced conformational changes.  For both self-
association and heterogeneous associations of proteins, frequently the number and type of complexes 
formed and the time-scale of the interaction can be discerned and the equilibrium constants can be 
determined.   

The theoretical description of the sedimentation process has long been established, starting in 
Svedberg’s laboratory in 1929 with Lamm’s derivation of the partial differential equation for 
macromolecular sedimentation and diffusion in the centrifugal field 3.  Several generations of physical 
chemists have continued this work and contributed to the theoretical and experimental development of 
this technique.  SV is still a modern tool and active area of research, which has rapidly developed in 
the last decade as the Lamm equation has become tractable in routine data analysis 4-11, and 
increasingly more comprehensive models for the sedimentation process can be used.  In conjunction 
with modern data acquisition systems of the commercial analytical ultracentrifuges, this has permitted 
the analysis of significantly increased data sets comprising one or more signals from the complete 
sedimentation process and across the whole solution column.   
 In the present communication, we review how Lamm equation solutions can be used in an 
approach of direct least-squares modeling of the complete sedimentation data in order to describe 
distributions of sedimenting particles.  For samples that exhibit a continuous, more or less broad 
distribution of sizes, such as carbohydrates, synthetic polymers, or even populations of single-cell 
organisms, this can lead to a characterization of the shape and polydispersity of the distribution of 
sedimentation parameters.  For samples that consist of a few discrete macromolecular species this 
description can help to identify the number, size, and s-value of the sedimenting species, as well as 
molecular interactions.  The latter is particularly important as analytical ultracentrifugation can provide 
unique information on protein-protein interactions and the formation of multi-protein complexes.  Key 
features of the modeling with distributions of Lamm equation solutions, termed c(s), are that both 
diffusion and the characteristic noise structure of the sedimentation data can be deconvoluted, leading 
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to high resolution and sensitivity.  It also lends itself to the incorporation of multiple signals from the 
sedimentation process into a global analysis, resulting in component sedimentation coefficient 
distributions, for example, revealing stoichiometry of mixed protein complexes.  The present chapter 
gives an overview of the theory, practice, and limitations of this approach.   
  

 
Figure 1:  Characteristic shapes of sedimentation profiles simulated for globular species of 1 kDa (A), 10 kDa (B), 100 
kDa (C), and 1 GDa (D) at 50,000 rpm and unit loading concentration. Scans are depicted in time-intervals of 10 min after 
start of centrifugation.  Larger size-range can be accommodated easily by adjusting the rotor speed and the time-interval of 
data acquisition. 
 
 
Theory 
An unknown macromolecular mixture in a sedimentation velocity experiment can be characterized via 
a differential distribution of sedimentation coefficients, c(s), where the concentration of species with 

sedimentation coefficients between s1 and s2 is given by the integral
2

1
( )

c

c
c s ds∫ .  In order to calculate 

the distribution c(s) consistent with least-squares data analysis, we require that if we sum over the 
sedimentation signals of all species the resulting total signal matches the experimental data as close as 
possible.  This can be expressed as  

max

min

1( , ) ( ) ( , ( ), , )
s

s

a r t c s s D s r t ds≅ χ∫          (1) 

12 with a(r,t) denoting the experimental signal at radius r and time t, and smin and smax the minimum and 
maximum s-value of the distribution.  χ1(s,D,r,t) represents the characteristic signal pattern that a 
single macromolecular species at unit concentration would produce (Figure 1).  The latter was given by 
Lamm in the form of a differential equation for sedimentation and diffusion  

 2 21
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3 where r denotes the distance from the center of rotation, ω the rotor angular velocity, and s and D the 
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macromolecular sedimentation and diffusion coefficient, respectively.  Adjustments can be made to 
account for compressible solvents, or sedimentation in dynamic density gradients 13,14.  It is apparent 
from Figure 1 that the sedimentation profiles χ1(s,D,r,t) exhibit large qualitative differences and are 
strongly size-dependent.  (An exception to the latter is very elongated structures, which can reach a 
limiting s-value 15).  Accordingly, the modeling problem in Eq. 1 is relatively well-posed – it consists 
essentially in unraveling which combination of sedimentation patterns will fit the observed data best 12.  
Numerical details how Eqs. 1 and 2 can be solved are described in 16.  This method and those described 
in the following are implemented in the programs SEDFIT and SEDPHAT.  It can be obtained from 
the website www.analyticalultracentrifugation.com, where tutorials and detailed information on the use 
of the software can also be found.  

It should be noted that sedimentation velocity is conceptually a comparatively simple experiment, 
consisting only of the application of a gravitational force to the macromolecules in free solution, and, 
as a consequence, the sedimentation/diffusion process is very accurately described by Eq. 1. This can 
make the analysis very quantitative.  It should comprise the entire sedimentation process, starting from 
the first signs of non-uniform distributions close to the meniscus and bottom, to the complete depletion 
of all material within the observable solution column, or the attainment of sedimentation equilibrium 
(Figure 2A).  Systematic noise components in the data acquisition can be taken into account easily 
using algebraic methods.  They lead to additional terms in Eq. 1 that explicitly express the systematic 
noise as radial-dependent baseline profiles and time-dependent but radially uniform offsets 17.  Least-
squares optimal estimates of these noise components can be subtracted from the data without 
introducing bias (as long as the noise parameters are maintained as unknowns in the following 
analyses), which permits a better visual inspection of the sedimentation profiles and the details of the 
fit.  Also, a best- fit meniscus position can be calculated and is usually well-determined by the data.  
This can lead to a higher degree of precision than permitted by the visual inspection of the optical 
artifact, with the latter being used to only for estimating limits for minimum and maximum values of 
the meniscus.  In general, the distribution model Eq. 1 leads to fits within the noise of the data 
acquisition, as judged by the root-mean-square (rms) deviation of the fit and the absence of systematic 
misfit of the sedimentation boundary in the residuals bitmap, and this is a pre-requisite for the detailed 
interpretation of the results.   

The numerical solution of the Fredholm integral equation Eq. 1 requires discretization of the range 
of s-values of the distribution.  With a spacing of s-values on the order of 0.1 S, the inversion of Eq. 1 
is generally well-conditioned and numerically stable.  This is due to the characteristic shapes of 
χ1(s,D,r,t), but also aided by the positivity requirement for the distribution c(s).  However, it can be 
shown mathematically that in the limit of very fine discretization of s the calculated distribution c(s) 
can become very noisy and many different curves c(s) may fit the data equally well within the noise of 
the data acquisition 12.  A well-established technique to suppress noise amplification in c(s) and to 
avoid detail in the distribution not warranted by the data is regularization.  It is based on predefined 
measures of likelihood or parsimony of the distributions, such as maximum entropy 

( )( )log ( )c s c s ds−∫  for discrete mixtures, or minimal total curvature 2''( )c s ds∫  for broader 

distributions.  Regularization ensures that if there is any statistical ambiguity in the resulting 
distribution, the most likely distributions will be selected among all that fit the data within a pre-
defined confidence limit 18,19.  The rationale is that, following Occam's razor, the solution with the 
highest parsimony is to be preferred.  While this can introduce a small bias, by design it is certain that 
the selected result produces fits of the raw data that are of a quality statistically indistinguishable from 
the overall best fit.  Regularization also provides a tool to explore alternate interpretations of the data, 
both by switching the regularization method and by changing the pre-defined confidence limit to 
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achieve weaker or stronger regularization (for example, going from a P-value of 0.7 to 0.95).  If 
detailed features of the calculated distribution disappear on a higher confidence limit, they should be 
interpreted with care, while features that appear independent over a large range of P-values are details 
that are an integral part of the observed data.   

  
Figure 2:  Illustration of the data analysis of an IgG sample at 40,000 rpm.  Panel A shows the raw data from interference 
optical data acquisition.  Panel B shows the same data after subtraction of the systematic noise contributions, which are 
the radial-invariant time-dependent offsets (Panel C), and the time-invariant radial-dependent baseline profile (Panel C).  
The systematic noise was calculated as part of the c(s) analysis shown in Figure 3A.  The rmsd of the fit was 0.0027 fringes, 
with the residuals in Panel F.  The residual bitmap in Panel E is scaled to ±0.01 fringes from black to white.  It shows that 

the remaining noise is dominated by vertical and horizontal lines, which are likely caused by higher-order vibrations of the 
optical system.  Importantly, no diagonal pattern is visible which would indicate the presence of a systematic misfit of the 
sedimentation boundary. 

 
  Complicating the analysis outlined above is the fact that two parameters, s and D, are required 
to specify the shape of the single macromolecular species sedimentation boundaries, but that we 
calculate only a one-dimensional sedimentation coefficient distribution.  Several different options are 
available to arrive at an estimate for D.  A very straightforward approach can be taken if all species in 
solution have the same diffusion coefficient, for example, distributions of apo-ferritin and ferritin, 
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which can be measured separately.  If D is known, the Svedberg relationship 

(1 )
sRT

M v
D

− ρ =           (3)  

1 (with the protein partial-specific volume v , the solution density ρ, the gas constant R and the 
absolute temperature T) can be used to transform the measured sedimentation coefficient distribution 
c(s) directly into a molar mass distribution c(M) 12,20. 

Another special case is that of negligible diffusion during the time of the sedimentation 
experiment, for example with very large particles.  Here, the approximation D = 0 can be used and the 
resulting sedimentation coefficient distribution is termed ls-g*(s) 21.  The Lamm equation solutions 
simplify to step-functions for incompressible solvents, and to step-functions with sloping plateaus if 
solvent compressibility is taken into account 14.  Conceptually, the ls-g*(s) distribution is related to 
g(s*) by dc/dt or dc/dr, although there are large differences in the practical application, among them 
the applicability to data with steep boundaries and large time intervals 21.  If the ls-g*(s) analysis is 
applied to the sedimentation analysis of particles that do exhibit significant diffusion, the distribution 
results in an apparent sedimentation coefficient distribution, which are convoluted by functions that are 
in first approximation Gaussians 21 from which for single species D and M may be estimated 22.  
However, more direct approaches to combine single species analyses with distributions will be 
described below. 
 A general approach to arrive at realistic estimates for D in unknown distributions is based on the 
description of D as a monotonous single-valued function of s.  The second assumption is made that, in 
a first approximation, all sedimenting species have similar frictional ratios f/f0, which can be described 
with the weight-average frictional ratio (f/f0)w .  For this case, we can derive the hydrodynamic scaling 
law  

( )( ) ( )( )3 2 1 21 2
0

2
( ) 1

18 w
D s kT s f f v v

−−= η − ρ
π

      (4) 

(with k denoting the Boltzmann constant and η the solvent viscosity) 16.  Several observations are in 
favor of this approach:  1) It is well-known that the values of f/f0 are only very weakly dependent on 
the macromolecular shape 23 (examples for commonly observed values of the hydrated frictional ratio 
are 1.2 – 1.3 for relatively globular proteins, 1.5-1.8 for asymmetric or glycosylated proteins, and 
larger values for very asymmetric or unfolded proteins or linear chains).  2) Diffusion is a much less 
size-dependent property than the sedimentation coefficient (for a particle of radius R, it is D ~ R, while 
s ~ R2).  3) the peak positions of c(s) are largely independent of the precise va lue of (f/f0)w, which 
mainly affects the peak shape and the resolution of species with different sedimentation coefficients.  
In fact, a family of c(s) with different values of (f/f0)w  – going continuously from c(s) with (f/f0)w = ∞  
(which is identical to the case of D(s) = 0 in the ls-g*(s) method and shows Gaussian broadened peaks) 
to c(s) with correct weight-average (f/f0)w (which shows sharp diffusion deconvoluted peaks) – will 
exhibit a constant peak position.  4) Since the boundary spreading from differential migration and from 
diffusion is different, (f/f0)w can be extracted by non- linear regression from the experimental data, in 
addition to the c(s) distribution 20.  5) The extent of diffusion relative to sedimentation decreases with 
higher rotor speed.  As a consequence, any errors in the approximations involved in the description of 
diffusion can be minimized at the highest rotor speeds, which optimize the hydrodynamic resolution.  
(Although c(s) is very well suited for sedimentation at high rotor speeds, it can also be used very 
effectively for data that exhibit a large boundary spread, such as from small molecules or from 
macromolecules at low rotor speed.)  This is the standard c(s) approach used in most of the 
applications so far 24.  The results of the analysis for the data of Figure 2 is shown in Figure 3A.   

If the weight-average frictional ratio (f/f0)w is well-determined by the data (which can be tested by 
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comparing the rms deviation of c(s) models with non-optimal f/f0 values), and if the distribution shows 
a single major peak, c(s) can be transformed using Eq. 3 to a molar mass distribution c(M).  Ordinarily, 
this will give estimates within 10% of the true molar mass (provided the correct partial-specific 
volume is known), which can provide a reliable answer, for example, if the protein represented in a 
major c(s) peak is monomeric or dimeric.  Caution should be applied, however, since, in contrast to 
c(s), the peak locations of c(M) will be strongly dependent on that the (f/f0)w is correct for the 
individual species, which may not be true, in particular, for trace components. 
 

 
Figure 3:  Panel A:  c(s) distribution from the analysis of the data shown in Figure 2.  Panel B:  hybrid continuous/discrete 
distribution (Eq. 5) with two discrete species of best-fit apparent molar mass of 159 kDa and 6.59 S, and a second species 
constrained to be of twice the molar mass and with best-fit s-value of 9.32 S.  The continuous sections cover the range from 
0.5 to 5 S, and 12 to 20 S, with a fix f/f0 of 1.3.  It should be noted that the molar mass values of the discrete species was 
calculated independently of the f/f0 of the continuous sections. 
 
 A more precise approach to extract molar mass information from the sedimentation profiles is the 
combination of the continuous distribution c(s) with discrete species, as in the hybrid 
discrete/continuous distribution model of SEDPHAT.  Here, several continuous segments can surround 
intervals of s-values that contain only one or more discrete species:   

  
max,

min,

( ) ( )
1 1 0 ,( , ) ( , , , ) ( ) ( , ( ) , , )

j

j

s
i j

i i w j
i j s

a r t C s M r t c s s f f r t ds≅ +∑ ∑ ∫c c      (5) 

with cj(s) denoting the population of species with sedimentation coefficients in different non-
overlapping intervals Ij = [smin,j, smax,j] which can be characterized by separate frictional ratios, in 
combination with discrete species at loading concentrations C(i) (in signal units) with s-values si 
outside the intervals Ij 25.  The discrete species are described by Lamm equation solutions, each with 
the two parameters s and M, and are not connected to the determination of (f/f0)w,j for the continuous 
segments.  In the implementation of SEDPHAT, up to 10 discrete species can be fitted, and their molar 
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mass values can be constrained to be multiples, for example, of a monomer molar mass.  Such an 
analysis can make use of the prior knowledge of the molar mass relationship and discrete nature of the 
sedimenting species, while at the same time providing enough flexibility to describe in the continuous 
c(s) segments possibly present larger species, such as aggregates, as well as contaminations with 
smaller molar mass or degradation products.  An example is shown in Figure 3B for an antibody 
sample.  If multiple sedimentation velocity data sets are available from the same sample, they can be 
combined in a global analysis with the sedimentation coefficient and molar mass values of the discrete 
species treated as global parameters.   

For the practical application of the c(s) analysis, it is important to select the limits smin and smax of 
the distribution wide enough to allow for the description of all sedimenting species.  However, a range 
much wider than necessary will significantly increase the computational time.  A good range can be 
ensured by observing the calculated distribution at the extreme values.  A non-zero value of c(smax) 
indicates the possible presence of material sedimenting faster than smax, and suggests that this value 
should be increased.  A nonzero value of the distribution at the minimum value smin , c(smin), can 
indicate either the presence of material sedimenting slower than smin, in which case smin should be 
reduced, or it can be caused by a correlation of the theoretical sedimentation pattern at smin with the 
baseline parameters (this can be the case, in particular, for experiments at low rotor speed and with 
short experiment times).  The two cases can be distinguished by comparing the distribution c(s) with 
the result after lowering the value of smin:  if  c(smin) increases, smin  is in the regime of baseline 
correlation; alternatively, if c(smin) decreases, a smaller species was likely present and of smin should be 
further reduced until c(smin) = 0, or until smin is in the regime of the baseline correlation.  In case of a 
baseline correlation, smin can be kept if it is well below the species of interest, but c(smin) should be 
ignored.  In this case, the correlation at smin only indicates the over-parameterization of the description 
of small molecule sedimentation, which is without consequence and does not introduce a bias into the 
results of the remaining c(s) distribution.  Only the reverse situation – a constraint in the description of 
sedimentation – would create a bias and must be avoided.   

A related practical question is that of the discretization of the s-range and the spacing of the 
values.  Frequently, for studies on medium sized proteins, a density of grid points of 10 per S unit can 
be a good compromise between ‘smoothness’ of the calculated distribution and excessive 
computational time.  It should be verified that the numerical resolution of s-values is sufficiently high 
not to constrain the quality of the fit.   
 For the characterization of sedimentation coefficient distributions of multi-component mixtures of 
spectrally dissimilar macromolecules, it is useful to follow the sedimentation process simultaneously at 
different characteristic signals and to acquire multiple data sets aλ(r,t) 

26.  For the analysis, it is possible 
to generalize Eq. 1 and formulate component sedimentation coefficient distributions ck(s) as 

max

min

1 0 ,
1

( , ) ( ) ( , ( ) , , ) 1... , ,det( ) 0
sK

k k kk w
k s

a r t c s s f f r t ds K
=

≅ = Λ ≤ Λ ≠∑ ∫l l le c l e   (6) 

where each macromolecular component k is described as contributing in a characteristic way to the 
signal λ according to a molar extinction coefficient (or molar signal increment) matrix εkλ.  This matrix 
can be determined from separate experiments of the individual sedimenting components.  An example 
is the analysis of protein-protein interactions between proteins of different weight-based extinction 
coefficients:  Here, the acquisition of absorbance data simultaneous to the interference data allows 
distinguishing the sedimentation behavior of each protein component in the mixture.  The component 
sedimentation coefficient distributions ck(s) are in molar units, and their ratio allows unraveling protein 
stoichiometries in complexes.   
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Refinements are possible, for example, by constraining different intervals of sedimentation 
coefficients to certain ranges of possible complex stoichiometries 26.  Another extension is the 
combination with discrete species analogous to the hybrid continuous/discrete model of Eq. 5.  This 
can take the form  

max,

min,

( )
1

1

( )
1 0 ,

1

( , ) ( , , , )

( ) ( , ( ) , , )
j

j

j

K
i

k i ik
i k

sK
j

k k k w
j k s

a r t C s M r t

c s s f f r t ds

=

=

≅

+

∑∑

∑∑ ∫

l l

l

e c

e c
      (8) 

with ( )iCk  representing the concentration of protein component k sedimenting as a discrete species i 

(characterized by the sedimentation coefficient si and the molar mass Mi) , and ( )( )j
kc s  the 

sedimentation coefficient distribution of component k in the continuous segment between smin,j and 
smax,j .    
 
 
Experimental  
The practical techniques for conducting sedimentation velocity experiments have long been worked 
out in great detail at the highest level of sophistication 1,2.  The direct least-squares modeling of the 
sedimentation profiles comprising the entire sedimentation process to within the noise of the data 
acquisition requires a certain experimental design, and introduces particular sensitivity towards certain 
experimental aspects which I will comment on in the following. 

As is well-known, macroscopic convection can be caused by temperature gradients, and therefore 
thorough temperature equilibration of the rotor is necessary.  In our experience with current 
instrumentation, after the temperature set point and the temperature reading are within 0.2°C, 
extending the equilibration time to additional 60 minutes has given best results.  During this 
equilibration period, the rotor should be at rest, since rotation – even at a low rotor speed – will not 
only cause some macromolecular sedimentation but also lead to misleading entries in the scan files for 
the elapsed time after start of centrifugation.  (This is in contrast to some other sedimentation and 
analysis techniques, which may be less sensitive towards initial rotation.)  Rotor acceleration can be 
accounted for in SEDFIT and SEDPHAT in the finite element solution of the Lamm equation.  If 
initial convection does occur, it may result in larger residuals close to the meniscus predominantly at 
the beginning of sedimentation.  Unfortunately, because the further sedimentation will depend on the 
entire history of the experiment, later scans will also be affected in their information and the detailed 
analysis is problematic even if the initial scans are removed from the analysis and an apparently high 
quality of fit is obtained.   

Regarding the loading composition of the sample, the c(s) method requires the absence of 
repulsive non-ideal sedimentation, and accordingly, low macromolecular concentrations are required.  
Fortunately, the optical systems are highly sensitive, and concentration below 0.05 mg/ml can 
routinely be studied with both the absorbance and the interference optical detection system.  For the 
interference optical system, the solution in the sample and reference sector should be precisely 
matched in volume and chemical composition, in order to cancel the potentially large signal 
originating from buffer salts.  It is possible to analyze unmatched samples by explicitly modeling the 
redistribution of the buffer salts (see below), but frequently at the cost of some details that can be 
reliably extracted from the analysis. 
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The highest possible rotor speed will give the best hydrodynamic resolution, and in our laboratory, 
we routinely use Epon centerpieces at rotor speeds of 50,000 rpm and 60,000 rpm after verifying the 
absence of leaks 27.  Intermediate rotor speeds contain more molar mass information, and the method 
can also be applied – at lower resolution – to data at low rotor speeds and the approach to equilibrium.  
Regarding the period of time for data acquisition, if possible it should extend from the beginning of the 
sedimentation to the complete depletion or the absence of further observable migration.  The Lamm 
equation modeling approach is not restricted in the consideration of early scans or large time intervals, 
and these can carry valuable information on the absence or presence of very small and very large 
particles, as well as the shape of the baseline profiles.  

As indicated above, the meniscus position should be included as a fitting parameter to be 
optimized by non- linear regression, because it generally cannot be determined experimentally with 
sufficient precision.  It may not coincide with the peak maximum of the characteristic optical artifact, 
but the latter can be used as a guide for minimal and maximal values for this parameter.  Similarly, if 
the sedimentation data to be analyzed include regions of back-diffusion from the bottom of the solution 
column, or if a small molar mass species is included in the model, the bottom position of the solution 
column should also be determined by non-linear regression.   

A step-by-step experimental protocol for novices in analytical ultracentrifugation which also 
includes the basic steps for data analysis in SEDFIT and SEDPHAT for sedimentation velocity and 
sedimentation equilibrium can be found in 27 and 28 .   

 
 

Results 
Figure 2 illustrates the results of the c(s) model in the original data space.  The interference optical raw 
data, shown in Figure 2A, are clearly superimposed by well-known systematic radial-dependent 
baseline offsets (‘TI noise’).  Additionally superimposed are time-dependent offsets constant in radius 
which (‘RI noise’) are less well visible in the presentation of Figure 2A.  As a consequence, the c(s) 
boundary model included parameters for TI and RI offsets.  It was fitted to the raw data, including 
meniscus position and the weight-average frictional value as unknown parameters.  After the c(s) fit 
has converged at an rms deviation of 0.0027 fringes, the raw data was decomposed into the different 
contributions.  Figure 2B shows the calculated signal after subtraction of the systematic signal offsets.  
The time-dependent offsets are shown in Figure 2C, and the radial-dependent baseline is shown in 
Figure 2D.  The residuals of the fit are encoded in a grayscale and shown as a bitmap in Figure 2E, 
with lines of pixels corresponding to different scans (first scan at the top, last at the bottom), and rows 
of pixels corresponding to different radial positions.  In this representation, systematic misfits of the 
boundary would be visualized as diagonal patterns.  These appear to be absent in Figure 2E, and the 
horizontal and vertical stripes suggests that part of the residuals likely originate from vibrations or 
thermally induced noise.  The magnitude of the maximal residuals is shown in Figure 2F.  In general, 
we found a similar procedure useful in the analysis of absorbance optical data, which appeared to 
differ mainly in the absence of time-dependent offsets (‘RI noise’) and in the radial-dependent baseline 
patterns exhibiting smaller slopes (data not shown).  The high quality of the fit shows that the 
calculated c(s) distribution represents the data well, which justifies a detailed interpretation.  
 The calculated c(s) distribution is shown in Figure 3A.  It exhibits a major peak for the monomeric 
species at ~ 6.5 S (without buffer correction), a baseline-separated a broader peak at 9 – 10 S, 
comprising of 4.8% of the material, and traces of higher oligomers at 14 S.  Next, we made the 
assumption for the 9 S species to be dimers, enabling a more refined analysis with the hybrid 
discrete/continuous model of Eq. 5.  We inserted two discrete species at 6.5 S and 9 S, constraining 
their molar mass to be in the ratio 2:1, and treated the monomer molar mass and the s-values of the 
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monomer and dimer as unknowns.  In order to avoid trace contamination of other species to bias these 
estimates for the discrete species, they were combined with two sections of continuous sedimentation 
coefficient distributions, from 0.5 – 5 S and 12 – 20 S.  The resulting distribution is shown in Figure 
3B.   
 This example indicates the sensitivity of the c(s) analysis.  Simulations show that from a set of 
profiles covering the complete sedimentation process at a signal- to-noise ratio of 200:1 (which can be 
readily achieved, e.g. at a loading concentration of 0.3 to 0.4 mg/ml of protein in the interference 
optics), minor peaks consisting of 0.2% of the total protein concentration should in theory be 
detectable with statistical confidence.  The statistical accuracy of the calculated c(s) distribution can be 
assessed by Monte-Carlo simulations 29.  For some applications, it may be advantageous to apply the 
statistical tests to the integral of c(s) over a certain s-range, rather than calculating the error contours of 
the c(s) distribution. 

In order to test the resolution of c(s) for sedimentation profiles that are governed by diffusional 
spread, sedimentation velocity experiments were simulated for a mixture of species with sedimentation 
coefficients of 1 S, 2 S, and 3 S at equal concentration.  Even at rotor speeds of 50,000 and 60,000 rpm 
diffusion broadening does not allow clearly sedimentation boundaries to establish (Figure 4).  The 
resulting c(s) distributions show clearly defined peaks.  Limitations in the deconvolution of diffusion 
are encountered at the lower rotor speed, which shows a degrading resolution and a small shift in the 1 
S peak.    

 
Figure 4:  Resolution of the c(s) distribution for mixtures of species with low molar mass.  Sedimentation profiles were 
simulated for 3 species with 6 kDa and 1 S, 10 kDa at 2 S, and 20 kDa and 3 S, respectively, at a loading concentration 
0.33 each and with 0.01 simulated noise.  Sedimentation was simulated for data acquisition in 10 min intervals (every 2nd 
scan shown) for rotor speeds of 50,000 rpm (Panel A) and 60,000 rpm (Panel B).  Panel C shows the c(s) distributions 
calculated assuming the presence of TI noise, an unknown meniscus position and optimizing the weight-average frictional 
ratio.  c(s) from the 50,000 rpm data (dotted line) and from the 60,000 rpm data (solid line).   

 
A second example is the interaction between D1.3 monoclonal antibody and hen egg lysozyme 

(Figure 5).  Panel A to C show the fringe displacement data of D1.3 (A), lysozyme (B), and a mixture 
(C) after subtraction of the systematic noise components.  A sloping signal offset can be discerned in 
the data from the sedimentation of the antibody (A), which are signals from the redistribution of 
unmatched buffer salts superimposed to the macromolecular sedimentation.  These are modeled as an 
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extra discrete species at 0.12 S and buoyant molar mass of 55.4 Da (best-fit estimates from the c(s) 
analysis).  Compared to the c(s) peak of the antibody alone (dashed line), the mixture (solid line) 
shows a peak shifted by 8% (0.5 S) towards a larger sedimentation coefficient, indicating binding of 
lysozyme to the antibody.  Because the concentrations used are > 100fold the equilibrium dissociation 
constant and lysozyme is in large excess, it can be assumed that all available sites on D1.3 in this 
antibody preparation are saturated and the 7.1 S peak in the mixture represents the antibody-antigen 
complex, possibly in addition to contaminations with unreacted antibody.   

 

 
Figure 5:  Analysis of the interaction between D1.3 monoclonal antibody and hen egg lysozyme, using interference optical 
fringe displacement data acquired in sedimentation velocity experiments at 50,000 rpm, 21 °C.  Panels A – C:  Fringe 

displacement profiles (every third scan shown) of D1.3 (A), hen egg lysozyme (B), and a mixture of both (C).  The residuals 
are from the c(s) analysis shown in Panel D.  It leads to an rms deviation of 0.0028 (A), 0.0028 (B), and 0.0043 (c)  fringes, 
respectively.  The residuals bitmap was scaled to a maximum dynamic range of 0.02.  Panel D:  c(s) distribution of D1.3 
(dashed line), hen egg lysozyme (dotted line), and the mixture (solid line).  For comparison, the results of the hybrid 
discrete continuous model are indicated as open symbols, showing only the discrete species for the hen egg lysozyme (open 
circles, M* = 15.6 kDa), the D1.3 antibody (open squares, M* = 150 kDa), and the two macromolecular species observed 
in the mixture (open triangles, M* = 15.1 kDa and 175 kDa).  The discrete species are in units of fringes, scaled 5fold for 
clarity.   
 

It is interesting to examine how information on the stoichiometry of the complex could be 
extracted from the sedimentation data.  Three different approaches are possible.  First, the relative shift 
in the s-value may be taken to estimate the increase in mass with the 2/3-power rule, assuming the 
constancy of shapes.  This would suggest an increase in mass by 12%, or ~ 17 kDa, which is 1.2fold 
the molar mass of the lysozyme.   

A second source of information can be the measurement of the species molar mass from boundary 
spreading.  Using the best- fit frictional ratios, the c(s) distributions can be transformed into molar mass 
distributions, which yields a peak of 163 kDa (apparent molar mass assuming vρ = 0.73) for the 
antibody ( 0( / )wf f = 1.6), and 15.8 kDa ( 0( / )wf f  = 1.3) for lysozyme, respectively.  For the 
individual proteins, these values are within the typical precision of c(M) from the true molar mass 
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values.  For the mixture, however, unrealistic values of 19.4 kDa for the free lysozyme and 141 kDa 
for the complex are obtained, with a best- fit 0( / )wf f  value of 1.4.  The reason for the unsuccessful 
c(M) characterization of the mixture lies in the fact that the weight-average frictional ratio of 1.4 does 
neither reflect the frictional ratio of lysozyme nor the antibody well.  It is too high for the lysozyme 
and leads to an overestimation of its mass, and vice versa for the antibody.  Such a situation can be 
encountered if the c(s) distribution does not exhibit a single major peak.  This problem may be 
addressed by calculating c(s) with two 0( / )wf f  values for different ranges of s-values.  The 
prerequisite for this technique is that the sedimenting species are well separated in s-value, which is 
fulfilled in the present case.  

A better approach for extracting the molar mass information from the data in Figure 5A-C is the 
hybrid discrete/continuous model (Eq. 5), if the peak regions of c(s) are replaced by discrete species 
for which s, and M are treated directly as unknown parameters.  At the same time, continuous segments 
of c(s) can be used to model trace components at higher and lower s-values.  These will use the scaling 
method Eq. 4, but the frictional ratio of the continuous segments are independent of the molar mass 
values for the discrete species.  This method gives apparent molar mass values of 15.6 kDa for the 
lysozyme, 150 kDa for the antibody, and two species of 15.1 and 175 kDa for the mixture (open 
symbols in Figure 5D).   

 

 
Figure 6:  Multi-signal analysis of the antibody-antigen mixture shown in Figure 5C.  Shown are the interference optical 
fringe displacement data (A) and absorbance optical data at 280 nm (B) acquired simultaneously during sedimentation.  
For clarity, only every third scan is shown.  In a preliminary analysis, similar multi-signal data pairs from the antibody 
and the antigen were modeled, based on a theoretical molar interference optical signal increment (2.75×Mw fringes/Mcm), 
and the value for the protein molar extinction coefficient at 280 nm was determined.  Values of 2.22×105 OD280/Mcm and 
3.42×104 OD280/Mcm were obtained for the D1.3 antibody and lysozyme, respectively.  This was used as a constraint in the 
analysis of the mixture.  The model consisted of the following discrete species:  of a small buffer component at 0.12 S 
contributing only to the interference data (cross), the free lysozyme (open square), free antibody (open circle), and the 
bound lysozyme (solid square) and antibody (solid circle).  The bound species were constrained to be co-sedimenting by 
establishing a link in molar mass and sedimentation coefficient.  This was combined with two continuous sections for both 
the lysozyme and the antigen component (not visible on this scale). 
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The third method to determine the complex stoichiometry consists in the global analysis of 

sedimentation data acquired with the refractive index sensitive interference system and the absorbance 
optical system (Figure 6A and B).  With the wavelength set to 280 nm, the global analysis can exploit 
differences in the fraction of aromatic amino acids of the antibody and lysozyme.  In general, this 
requires differences in the mg/ml based extinction coefficient of the two proteins.  In the present case, 
although the mg/ml-molar extinction coefficients are significantly different (1.58 OD280/(mg/ml×cm) 

for IgG and 2.57 OD280/(mg/ml×cm) for lysozyme, respectively), a 2:1 complex and free antibody 
differ only by 10% due to the large difference in molar mass.  The component sedimentation 
coefficient distributions ck(s) according to Eq. 6 are shown in 26, indicating a molar ratio of 1.8:1 and 
the presence of unreacted antibody.  The result of the multi-signal hybrid discrete/continuous analysis 
following Eq. 8 is shown in Figure 6C.  The molar ratio of the content of antibody and antigen in the 
7.1 S component is 1.74:1, consistent with the previously reported results for the continuous multi-
signal ck(s) analysis 26.  The best-fit estimate for the molar mass of the complex species is 171 kDa.   

c(s) is based on equations describing superpositions of non- interacting species.  This is a good 
approximation for the application to mixtures of reversibly interacting proteins if the complexes 
formed in the loading mixture are maintained during the sedimentation experiment.  Sufficient stability 
of complexes can be achieved either due to a low off- rate constant or due to loading concentrations far 
above or below the equilibrium dissociation constant.  If these conditions are not fulfilled, the 
sedimentation coefficient distribution will be governed by the features of the sedimentation boundary.  
It is of interest to study how these features will be represented in the c(s) curves.  For this purpose, 
using the finite element Lamm equation solution with reaction terms described in 30, the sedimentation 
of an interacting system of the type A + B ↔ AB was simulated for interacting proteins of 30 kDa and 
50 kDa, at different reaction rate constants, and at different concentrations of the components.   

For fast reactions, Gilbert and Jenkins have developed a theoretical description for the asymptotic 
shapes of the sedimentation boundary at infinite time 31, which predicts the sedimentation to proceed 
with an undisturbed boundary with the sedimentation rate of one of the free species, in combination 
with a reaction boundary that is composed of a mixture of both free species and the complex and 
sediments at a range of s-values in between the s-values of the larger free species and the complex.  
Figure 7A shows typical results obtained for a fast reaction (dissociation rate constant koff = 0.01/sec, 
which can usually be considered instantaneous on the time-scale of sedimentation) at equimolar 
loading concentrations from 0.1 to 3fold Kd.  Typical features of the c(s) distribution are a bimodal 
boundary shape, with a peak appearing at a concentration-independent s-value close to that of the 
smaller protein component, and a second peak at a concentration-dependent position.  This is 
consistent with the predictions by Gilbert for the migration of the reaction boundary of such a system 
in the limit of no diffusion 31.  A quantitative analysis of the concentration dependence of the faster 
boundary component (calculated by integration over the faster c(s) peak) can yield valuable 
information on the binding constant and the s-value of the complex 32 (insets in Figure 7A).  Similarly, 
isotherms of the relative signals of the two boundary components can be analyzed on the basis of 
Gilbert-Jenkins theory 32.  This can significantly improve the traditional analysis of the concentration 
dependence of the overall weigh-average sedimentation coefficient 32-34.  For comparison, the g*(s) 
distributions calculated as ls-g*(s) in Figure 7B show a single broad peak, from which no finer 
structure can be discerned and only the overall weight-average s-value be determined.  Similarly, the 
integral sedimentation coefficient distributions G(s) from the van Holde-Weischet extrapolation 
method 35 does not allow to discern information on the time-scale of reaction, or any further 
quantitative analysis 32. 
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Figure 8:  Results of the sedimentation coefficient 
distribution analysis applied to slowly interacting 
proteins.  Calculations are based on the same system as 
in Figure 7, but with Kd = 3.2 µM and koff =  3.2×10-

5/sec.  Component concentrations were equimolar at 0.3 
(dotted line), 1 (dash-dotted line), 3 (dash-dot-dotted 
line), 10 (dashed line), and 30 µM (solid line).  All other 
parameters of the simulated sedimentation and the 
analysis were identical to those in Figure 7.  Panel A 
shows the c(s) distributions, with the isotherm of the 
weight-average s-value (left inset, solid circles), and the 
isotherms of the concentrations of the individual species 
(right inset, in signal units) with free A (circles), free B 
(triangles), and complex (squares), and the 
corresponding theoretical isotherms based on mass 
action law (solid lines). Panel B shows the ls-g*(s) 
distributions.  All distributions are scaled to unit area, 
except curves for 1 and 3 µM in Panel A, which are 
scaled 10fold for clarity.  The inset shows the integral 
sedimentation coefficient distributions from the van 
Holde-Weischet method. 

Figure 7:  Results of sedimentation coefficient distribution 
analysis applied to the rapidly interacting proteins.  
Calculations are based on a species with 30kDa and 3 S 
binding to a second species with 50 kDa and 4.5 S to form a 
6 S complex with an equilibrium dissociation constant of Kd 
= 10 µM, and an off-rate constant k off = 1×10-2/sec.  

Sedimentation was simulated for a rotor speed of 50,000 
rpm, mimicking signal and noise of interference optical data 
acquisition, with 50 scans in intervals of 5 min subjected to 
the c(s) analysis.  Component concentrations were equimolar 
at 1 (dotted line), 3 (dash-dotted line), 10 (dashed line), and 
30 µM (solid line).  Panel A shows the result of the c(s) 
analysis, using meniscus, time-invariant noise, and weight-
average frictional ratio as unknown parameters.  The left 
inset shows the isotherms of the weight-average s-value 
(solid circles) and the s-value of the fast boundary 
component (open triangles), both determined by integration 
of the c(s) distribution, and the theoretical isotherms 
predicted from mass action law (solid line) and Gilbert-
Jenkins theory (dotted line), respectively.  The right insets 
shows the amplitudes in signal units of the undisturbed 
(squares) and reaction boundary component (triangles), and 
the theoretical isotherms predicted from Gilbert-Jenkins 
theory (solid lines).  Panel B shows the apparent 
sedimentation coefficient distribution ls-g*(s) without 
deconvolution of diffusion, applied to the scans from 50 – 
100 min only to ensure a reasonable fit of the data.  All 
distributions are scaled to unit area.  The inset shows the 
integral sedimentation coefficient distributions from the van 
Holde-Weischet method, calculated with the least-squares 
method described in 20.  
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Figure 8A shows the c(s) distributions for a system with slower complex dissociation, koff =  
3.2×10-5/sec (for equimolar loading concentrations from 0.1 to 10fold Kd).  Peaks can be discerned at 
constant positions (the c(s) curves at the lowest concentrations are broadened due to a limited signal-
to-noise ratio), resolving the sedimenting species.  The reaction is reflected here in the changes of the 
relative heights of the peaks, reflecting redistribution according to mass action law.  The isotherms of 
the weight-average s-value and the signal amplitudes of the three boundary components, which can be 
modeled jointly in a global analysis, are shown in the insets.  Interestingly, the ls-g*(s) distribution in 
Figure 8B again show a single broad peak, qualitatively similar to those in Figure 7B.  Similarly, also 
the integral sedimentation coefficient distributions G(s) do not resolve the species and resemble those 
from Figure 7B.  

In comparison, Figure 7A and 8A illustrate the qualitatively different behavior of the c(s) 
distribution for slow (koff < 10-5/sec) and fast (koff > 10-3/sec) reactions, which can be diagnosed from 
the concentration dependence of the c(s) distributions (going from concentrations significantly lower 
than Kd to concentrations significantly higher than Kd).  If the peak positions are changing, the reaction 
is fast on the time-scale of sedimentation, and the distribution reflects the features of the reaction 
boundary.  If the peak positions are constant but changing only in heights, this suggests stability of the 
complex on the time-scale of sedimentation, and supports the interpretation of peaks as reflecting 
parameters of the sedimenting species.  For fast reactions, the interaction can be characterized by 
integrating the two characteristic peaks and modeling the isotherm of s-values and boundary heights on 
the basis of Gilbert-Jenkins theory 32, while for slow reactions the isotherms of populations of the 
individual species can be determined by integration of c(s), which can be modeled by applying mass 
action law and mass conservation to the loading mixture.  In either case, as shown in 34, weight-
average sedimentation coefficients can be obtained rigorously from the integration of the complete c(s) 
profiles.  For any of the isotherm analyses, the integration can be conducted such that peaks from 
contaminating species can be excluded if they sediment outside the range of s-values of the interacting 
species. 

 
 

Discussion 
The examples above illustrate that a detailed model for the sedimenting macromolecular mixture can 
be extracted from the least-squares modeling of the concentration profiles observed in sedimentation 
velocity analytical ultracentrifugation.  This is consistent with the results reported previously on this 
methodology 12,16,20, and with the results of applications to the study of many macromolecular mixtures 
24.  Because the c(s) distributions are superpositions of Lamm equation solutions, the hydrodynamic 
resolution is not confined to clearly visible sedimentation boundaries, but extends to the discrimination 
of macromolecular species within broad boundaries, where the rms displacement from diffusion during 
the sedimentation process exceeds the separation from differential sedimentation 20.   

Data from the entire sedimentation experiment can be modeled, and the analysis can be combined 
with the algebraic methods to calculate best- fit estimates of the systematic noise contributions.  This 
method provides the least bias and noise amplification, and allows to subtract the estimated systematic 
noise contributions from the raw data.  Although these estimates are model-dependent (and therefore 
the consideration systematic noise offsets must be maintained during the subsequent analyses of the 
corrected data), it should be noted that degrees of freedom in the data interpretation resulting from the 
unknown offsets are inherent in the data and cannot be eliminated by any data pre-treatment without 
bias.  However, we found that the visualization of the fit in the raw data space can be very instructive, 
and it can be very helpful for the design and interpretation of sedimentation experiment to verify the 
relationship of different boundary components or other data aspects to the peaks in the c(s) 
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distribution.  In our experience, details of the sedimentation coefficient distributions should be 
interpreted only after a critical inspection of the raw data and the quality of the fit, ensuring that all 
features of the sedimentation process in the sample have been described in the model.  The latter also 
includes the sedimentation of unmatched buffer salt.       

Sedimentation velocity can be a very sensitive tool for the detection of trace components, a topic 
of high importance in biotechnology applications 36.  In principle, if a sedimenting oligomeric species 
sediments faster than the leading edge of the diffusion envelope of a monomer, its presence will 
manifest itself in a slope (or migrating step) in the plateau region of the monomer.  (Theoretically, the 
highest rotor speeds should promote this configuration.)  Considering the large number of data points 
reporting on the shape of the plateau during the course of the experiment, it can easily be seen how the 
detection sensitivity can be far below the noise for a single data point. The c(s) and ls-g*(s) 
distributions can extract this information as they permit the detailed modeling of data sets – including 
the plateau region – and since they can describe fast-moving species with large boundary displacement 
between scans.  The characterization of species sedimenting within the limits of the diffusion 
broadened boundary of the monomer is difficult.  The use of prior knowledge, such as the existence of 
discrete species with molar mass constraints combined with segments of continuous distributions 
(Figure 3B) is a possibility to improve the analysis.  In this approach, the continuous segments may 
only describe the species of secondary interest outside the s-range of the discrete species, but they 
ensure that those are properly modeled and not bias the estimate of the species of interest. 
 The description of diffusion in the sedimentation profiles constituting the basis for the distribution 
(Figure 1) provides for the deconvolution of diffusion in the sedimentation coefficient distributions, 
which is the source of the relatively high resolution.  The extent of diffusion for each species is 
estimated by the assumption that, in first approximation, all species have a very similar frictional ratio.  
Since the numerical value of the frictional ratio usually does not vary greatly, this will accommodate a 
large range of shapes.  (It should be noted that there is no assumption of an actual specific shape or 
frictional ratio, since the value of (f/f0)w is determined by regression from the data.)  By design, this 
approach will work best at the highest rotor speeds, when the extent of diffusion is small compared to 
sedimentation.  Nevertheless, as illustrated in Figure 4, it can also work very well for resolving species 
with a large diffusional spread, caused either by low rotor speeds or by small macromolecule size.   

If prior knowledge is available regarding the molar mass or dissimilar frictional shape of certain 
species (or if the course of the analysis leads to such conclusion), more flexibility of the c(s) analysis is 
possible by dividing the range of s-values into different regimes, and by combination with discrete 
species with or without molar mass constraints.  Possible pitfalls of such more complex 
parameterizations of the distribution are correlations, but these can be avoided by considering the 
characteristic shapes of the sedimentation profiles provided for by the different segments and species 
assembled in the distribution.  Further, we have shown previously that the discrete species in the 
hybrid distributions can be described by global parameters in the framework of global analysis of 
several sedimentation velocity data sets 25.  This can be the global analysis of different samples with 
common discrete species 25 or the global analysis of the same sample at different rotor speed 37.     
 Although in the discussion above the purpose of estimating the extent of diffusion was essentially 
a means to arrive at higher resolution sedimentation coefficient distributions, of course, the diffusion 
itself can provide valuable information on the nature of the sample.  As illustrated in the example of 
Figure 4A and B (corresponding to the dotted and dashed line in Figure 4D) the c(s) distribution may 
be converted to a c(M) molar mass distribution using the Svedberg relationship to calculate the molar 
mass from each s-value in the distribution and its estimated diffusion coefficient.  In our experience 
this works well if a single major peak is present in the distribution (usually within 10% of the correct 
molar mass value, provided the correct density and partial-specific volume is known).  This will ensure 



 18

that the weight-average frictional ratio is representing well the major species of interest.  In many 
cases, such a determination of molar mass by c(M) analysis can be superior to the modeling with single 
or few discrete species 16.  In contrast, the peaks of less abundant fractions of the sample may be at an 
incorrect molar mass position if they exhibit significantly different frictional ratio from the calculated 
weight-average.  Such a dependence of peak positions on the value of (f/f0)w is usually not observed in 
the c(s) distribution 20.  The example of the mixture in Figure 4C shows how c(M) can lead to incorrect 
results for mixtures of similarly abundant species with dissimilar frictional ratio.  Better results are 
obtained when the peak regions of c(s) are substituted by discrete species, combined with continuous 
sections in between (using again the hybrid discrete/continuous model in SEDPHAT, Eq. 5), such that 
the hydrodynamic scaling law Eq. 4 and assumptions of shape similarity are abandoned for the species 
of interest (see above).  
 A third source of information from the sedimentation process specifically for the characterization 
of heterogeneous macromolecular mixtures is the different signal contributions to the interference 
optical and absorbance optical detection system, and/or to the absorbance at different wavelengths.  
This was demonstrated by Steinberg and Schachman for the simultaneous analysis of constituent 
sedimentation coefficients.  (This has been implemented in SEDPHAT for the global analysis of 
isotherms of signal-average sedimentation coefficient obtained at different loading compositions and 
observed at different optical signals).  It has been shown recently that characteristic distinguishable 
optical signals can be exploited to unravel the sedimentation coefficient distributions of the individual 
components in mixtures, ck(s) 26.  Due to the large data basis in sedimentation velocity, differences in 
the number of aromatic amino acids in proteins can be sufficient for distinguishing their sedimentation 
for mixtures of two or three different proteins mixtures, if data are acquired by refractive index 
sensitive interference optics and absorbance optics at 280 and 250 nm 26.  This can be enhanced by 
chromophoric labeling of selected protein components.  First applications have shown the potential for 
the combined spectral and hydrodynamic resolution to unravel the stoichiometry of multiple co-
existing protein complexes, such as in the multi-step assembly of vitronecting and plasminogen 
activator inhibitor-1 38, and in the assembly of the multi-protein complex of adaptor proteins after T-
cell activa tion 39.   

In the present context, we have shown how the global multi-signal ck(s) analysis can reveal the 
stoichiometry of the protein complex (Figure 6), extended to the combination of discrete species and 
continuous segments of the distribution (Eq. 8).  Due to the large molar mass ratio, the spectral 
differences of complexes with different stoichiometry was relatively small, posing a very stringent test 
for the spectral decomposition.  Nevertheless, the results clearly indicate the formation of 2:1 
complexes, consistent with the previous results from the continuous ck(s) analysis 26.  It should be 
noted that this does neither rely on the particular s-value of the complex, nor the boundary spreading, 
and therefore appears to be more robust against the onset of the influence of chemical reactions on the 
time-scale of sedimentation in reaction boundaries 26,32 
 It is a problem inherent to all known sedimentation coefficient distributions that they are based on 
equations describing the non-interacting superposition of species, which is strictly not suitable for the 
characterization of reversibly interacting macromolecules.  Nevertheless, it can be a good 
approximation if the protein complexes are relatively stable on the time-scale of sedimentation, which 
could be either due to a low dissociation rate constant of the complex, or if the complex can be 
maintained in virtual saturation through use of concentrations far above the equilibrium dissociation 
constant.  If these conditions are not fulfilled, the sedimentation is governed by the simultaneous 
migration and chemical conversion.  Gilbert has described in detail the shapes of the resulting reaction 
boundaries for the case of instantaneous reactions in the absence of diffusion, and shown that they 
exhibit bimodal shape for two-component mixtures, with a leading boundary component that migrates 
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at a rate intermediate between that expected of a stable complex and stable free species 31.  
Independently, Krauss et al. have shown that the reaction boundary for small reactants can be 
described approximately by a single diffusion coefficient 5,30,40.  Using computer simulations for the 
sedimentation of reacting systems with different complex stability and at different loading 
concentrations 30,34, we have shown that whether or not c(s) peaks represent sedimenting species or 
features of the reaction boundary can be diagnosed from a series of experiments at different loading 
concentrations covering a range from significantly lower to significantly higher than KD.  If the peak 
positions of c(s) remain at a constant position but change in the ratio of peak area, a relatively slow 
interaction is indicated for which the species interpretation is a good approximation.  On the other 
hand, dependence of the c(s) peak positions on the loading concentration indicates the presence of a 
fast reaction with c(s) reflecting the reaction boundary.  However, it is also possible that the 
sedimentation data alone may not have sufficient information to permit the correct assessment of the 
interaction kinetics 30.   

In both cases, the integration of c(s) distribution over all peaks caused by species participating in 
the reaction will provide a correct measure of the weight-average s-value (or signal-average s-value, 
respectively).  The isotherm of the dependence of the signal-average s-values on the loading 
concentration can be modeled to determine equilibrium constants 34,41.  This can be combined in a 
global model with isotherms utilizing the resolution of undisturbed and reaction boundary or the 
population of the different species, respectively, dependent on the time-scale of reaction kinetics.   

As an alternative to the isotherm modeling approach following c(s) analysis for interacting 
systems, the raw sedimentation data may be modeled directly with Lamm equation solutions 
incorporating reaction terms 42.  Efficient numerical solutions of these Lamm equations have been 
recently introduced and implemented in SEDPHAT 30.  In this context, our results suggest that the 
application of the c(s) analysis to can be helpful initially to determine the correct interaction model, in 
particular, in the form of the multi-signal component sedimentation coefficient distributions ck(s).  
More details on the behavior of c(s) and multi-signal ck(s) applied to reacting systems, and the 
comparison with Lamm equation modeling and isotherm analyses can be found in 27,30,32,34.   
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